x खातीर सोडोवचें
x=-\frac{2}{5}=-0.4
x=-\frac{1}{3}\approx -0.333333333
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
a+b=11 ab=15\times 2=30
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू 15x^{2}+ax+bx+2 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,30 2,15 3,10 5,6
ab सकारात्मक आसा देखून, a आनी b क एकूच खूण आसा. a+b सकारात्मक आसा देखून, a आनी b दोनूय सकारात्मक आसा. गुणक दिवपी तत्सम जोडयांची सुची 30.
1+30=31 2+15=17 3+10=13 5+6=11
दरेक जोडयेखातीर गणीत मेजचें.
a=5 b=6
जोडयेचें उत्तर जें दिता गणीत 11.
\left(15x^{2}+5x\right)+\left(6x+2\right)
15x^{2}+11x+2 हें \left(15x^{2}+5x\right)+\left(6x+2\right) बरोवचें.
5x\left(3x+1\right)+2\left(3x+1\right)
पयल्यात 5xफॅक्टर आवट आनी 2 दुस-या गटात.
\left(3x+1\right)\left(5x+2\right)
फॅक्टर आवट सामान्य शब्द 3x+1 वितरीत गूणधर्म वापरून.
x=-\frac{1}{3} x=-\frac{2}{5}
गणीताचें उत्तर सोदूंक, सोडोवचें 3x+1=0 आनी 5x+2=0.
15x^{2}+11x+2=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-11±\sqrt{11^{2}-4\times 15\times 2}}{2\times 15}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 15, b खातीर 11 आनी c खातीर 2 बदली घेवचे.
x=\frac{-11±\sqrt{121-4\times 15\times 2}}{2\times 15}
11 वर्गमूळ.
x=\frac{-11±\sqrt{121-60\times 2}}{2\times 15}
15क -4 फावटी गुणचें.
x=\frac{-11±\sqrt{121-120}}{2\times 15}
2क -60 फावटी गुणचें.
x=\frac{-11±\sqrt{1}}{2\times 15}
-120 कडेन 121 ची बेरीज करची.
x=\frac{-11±1}{2\times 15}
1 चें वर्गमूळ घेवचें.
x=\frac{-11±1}{30}
15क 2 फावटी गुणचें.
x=-\frac{10}{30}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-11±1}{30} सोडोवचें. 1 कडेन -11 ची बेरीज करची.
x=-\frac{1}{3}
10 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{-10}{30} उणो करचो.
x=-\frac{12}{30}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-11±1}{30} सोडोवचें. -11 तल्यान 1 वजा करची.
x=-\frac{2}{5}
6 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{-12}{30} उणो करचो.
x=-\frac{1}{3} x=-\frac{2}{5}
समिकरण आतां सुटावें जालें.
15x^{2}+11x+2=0
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
15x^{2}+11x+2-2=-2
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
15x^{2}+11x=-2
तातूंतल्यानूच 2 वजा केल्यार 0 उरता.
\frac{15x^{2}+11x}{15}=-\frac{2}{15}
दोनुय कुशींक 15 न भाग लावचो.
x^{2}+\frac{11}{15}x=-\frac{2}{15}
15 वरवीं भागाकार केल्यार 15 वरवीं केल्लो गुणाकार काडटा.
x^{2}+\frac{11}{15}x+\left(\frac{11}{30}\right)^{2}=-\frac{2}{15}+\left(\frac{11}{30}\right)^{2}
\frac{11}{30} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो \frac{11}{15} क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी \frac{11}{30} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}+\frac{11}{15}x+\frac{121}{900}=-\frac{2}{15}+\frac{121}{900}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन \frac{11}{30} क वर्गमूळ लावचें.
x^{2}+\frac{11}{15}x+\frac{121}{900}=\frac{1}{900}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{121}{900} क -\frac{2}{15} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
\left(x+\frac{11}{30}\right)^{2}=\frac{1}{900}
गुणकपद x^{2}+\frac{11}{15}x+\frac{121}{900}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x+\frac{11}{30}\right)^{2}}=\sqrt{\frac{1}{900}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x+\frac{11}{30}=\frac{1}{30} x+\frac{11}{30}=-\frac{1}{30}
सोंपें करचें.
x=-\frac{1}{3} x=-\frac{2}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{11}{30} वजा करचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}