x खातीर सोडोवचें
x=\sqrt{14}+2\approx 5.741657387
x=2-\sqrt{14}\approx -1.741657387
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
10-x^{2}+4x=0
10 मेळोवंक 15 आनी 5 वजा करचे.
-x^{2}+4x+10=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर -1, b खातीर 4 आनी c खातीर 10 बदली घेवचे.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 10}}{2\left(-1\right)}
4 वर्गमूळ.
x=\frac{-4±\sqrt{16+4\times 10}}{2\left(-1\right)}
-1क -4 फावटी गुणचें.
x=\frac{-4±\sqrt{16+40}}{2\left(-1\right)}
10क 4 फावटी गुणचें.
x=\frac{-4±\sqrt{56}}{2\left(-1\right)}
40 कडेन 16 ची बेरीज करची.
x=\frac{-4±2\sqrt{14}}{2\left(-1\right)}
56 चें वर्गमूळ घेवचें.
x=\frac{-4±2\sqrt{14}}{-2}
-1क 2 फावटी गुणचें.
x=\frac{2\sqrt{14}-4}{-2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-4±2\sqrt{14}}{-2} सोडोवचें. 2\sqrt{14} कडेन -4 ची बेरीज करची.
x=2-\sqrt{14}
-2 न-4+2\sqrt{14} क भाग लावचो.
x=\frac{-2\sqrt{14}-4}{-2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-4±2\sqrt{14}}{-2} सोडोवचें. -4 तल्यान 2\sqrt{14} वजा करची.
x=\sqrt{14}+2
-2 न-4-2\sqrt{14} क भाग लावचो.
x=2-\sqrt{14} x=\sqrt{14}+2
समिकरण आतां सुटावें जालें.
10-x^{2}+4x=0
10 मेळोवंक 15 आनी 5 वजा करचे.
-x^{2}+4x=-10
दोनूय कुशींतल्यान 10 वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
\frac{-x^{2}+4x}{-1}=-\frac{10}{-1}
दोनुय कुशींक -1 न भाग लावचो.
x^{2}+\frac{4}{-1}x=-\frac{10}{-1}
-1 वरवीं भागाकार केल्यार -1 वरवीं केल्लो गुणाकार काडटा.
x^{2}-4x=-\frac{10}{-1}
-1 न4 क भाग लावचो.
x^{2}-4x=10
-1 न-10 क भाग लावचो.
x^{2}-4x+\left(-2\right)^{2}=10+\left(-2\right)^{2}
-2 मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -4 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -2 च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-4x+4=10+4
-2 वर्गमूळ.
x^{2}-4x+4=14
4 कडेन 10 ची बेरीज करची.
\left(x-2\right)^{2}=14
गुणकपद x^{2}-4x+4. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-2\right)^{2}}=\sqrt{14}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-2=\sqrt{14} x-2=-\sqrt{14}
सोंपें करचें.
x=\sqrt{14}+2 x=2-\sqrt{14}
समिकरणाच्या दोनूय कुशींतल्यान 2 ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}