p खातीर सोडोवचें
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}\approx 87.736047709+967.315156682i
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}\approx 87.736047709-967.315156682i
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
\frac{1}{1000} मेळोवंक -3 चो 10 पॉवर मेजचो.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
\frac{261}{250} मेळोवंक 1044 आनी \frac{1}{1000} गुणचें.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
2478968175 मेळोवंक 83145 आनी 29815 गुणचें.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
\frac{1}{1000000} मेळोवंक -6 चो 10 पॉवर मेजचो.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
\frac{93}{500000} मेळोवंक 186 आनी \frac{1}{1000000} गुणचें.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
\frac{1}{100000000} मेळोवंक -8 चो 10 पॉवर मेजचो.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
\frac{53}{50000000} मेळोवंक 106 आनी \frac{1}{100000000} गुणचें.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
1-\frac{93}{500000}p+\frac{53}{50000000}p^{2} न 2478968175 गुणपाक विभाजक विशमाचो वापर करचो.
\frac{261}{250}p-2478968175=-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
दोनूय कुशींतल्यान 2478968175 वजा करचें.
\frac{261}{250}p-2478968175+\frac{9221761611}{20000}p=\frac{5255412531}{2000000}p^{2}
दोनूय वटांनी \frac{9221761611}{20000}p जोडचे.
\frac{9221782491}{20000}p-2478968175=\frac{5255412531}{2000000}p^{2}
\frac{9221782491}{20000}p मेळोवंक \frac{261}{250}p आनी \frac{9221761611}{20000}p एकठांय करचें.
\frac{9221782491}{20000}p-2478968175-\frac{5255412531}{2000000}p^{2}=0
दोनूय कुशींतल्यान \frac{5255412531}{2000000}p^{2} वजा करचें.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p-2478968175=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\left(\frac{9221782491}{20000}\right)^{2}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर -\frac{5255412531}{2000000}, b खातीर \frac{9221782491}{20000} आनी c खातीर -2478968175 बदली घेवचे.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन \frac{9221782491}{20000} क वर्गमूळ लावचें.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}+\frac{5255412531}{500000}\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
-\frac{5255412531}{2000000}क -4 फावटी गुणचें.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-\frac{521120016433808037}{20000}}}{2\left(-\frac{5255412531}{2000000}\right)}
-2478968175क \frac{5255412531}{500000} फावटी गुणचें.
p=\frac{-\frac{9221782491}{20000}±\sqrt{-\frac{10337359056364846574919}{400000000}}}{2\left(-\frac{5255412531}{2000000}\right)}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{521120016433808037}{20000} क \frac{85041272311314165081}{400000000} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{2\left(-\frac{5255412531}{2000000}\right)}
-\frac{10337359056364846574919}{400000000} चें वर्गमूळ घेवचें.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}}
-\frac{5255412531}{2000000}क 2 फावटी गुणचें.
p=\frac{-9221782491+3\sqrt{1148595450707205174991}i}{-\frac{5255412531}{1000000}\times 20000}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} सोडोवचें. \frac{3i\sqrt{1148595450707205174991}}{20000} कडेन -\frac{9221782491}{20000} ची बेरीज करची.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
-\frac{5255412531}{1000000} च्या पुरकाक \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} गुणून -\frac{5255412531}{1000000} न \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} क भाग लावचो.
p=\frac{-3\sqrt{1148595450707205174991}i-9221782491}{-\frac{5255412531}{1000000}\times 20000}
जेन्ना ± वजा आस्ता तेन्ना समिकरण p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} सोडोवचें. -\frac{9221782491}{20000} तल्यान \frac{3i\sqrt{1148595450707205174991}}{20000} वजा करची.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
-\frac{5255412531}{1000000} च्या पुरकाक \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} गुणून -\frac{5255412531}{1000000} न \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} क भाग लावचो.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177} p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
समिकरण आतां सुटावें जालें.
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
\frac{1}{1000} मेळोवंक -3 चो 10 पॉवर मेजचो.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
\frac{261}{250} मेळोवंक 1044 आनी \frac{1}{1000} गुणचें.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
2478968175 मेळोवंक 83145 आनी 29815 गुणचें.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
\frac{1}{1000000} मेळोवंक -6 चो 10 पॉवर मेजचो.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
\frac{93}{500000} मेळोवंक 186 आनी \frac{1}{1000000} गुणचें.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
\frac{1}{100000000} मेळोवंक -8 चो 10 पॉवर मेजचो.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
\frac{53}{50000000} मेळोवंक 106 आनी \frac{1}{100000000} गुणचें.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
1-\frac{93}{500000}p+\frac{53}{50000000}p^{2} न 2478968175 गुणपाक विभाजक विशमाचो वापर करचो.
\frac{261}{250}p+\frac{9221761611}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
दोनूय वटांनी \frac{9221761611}{20000}p जोडचे.
\frac{9221782491}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
\frac{9221782491}{20000}p मेळोवंक \frac{261}{250}p आनी \frac{9221761611}{20000}p एकठांय करचें.
\frac{9221782491}{20000}p-\frac{5255412531}{2000000}p^{2}=2478968175
दोनूय कुशींतल्यान \frac{5255412531}{2000000}p^{2} वजा करचें.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p=2478968175
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
\frac{-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p}{-\frac{5255412531}{2000000}}=\frac{2478968175}{-\frac{5255412531}{2000000}}
-\frac{5255412531}{2000000} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
p^{2}+\frac{\frac{9221782491}{20000}}{-\frac{5255412531}{2000000}}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
-\frac{5255412531}{2000000} वरवीं भागाकार केल्यार -\frac{5255412531}{2000000} वरवीं केल्लो गुणाकार काडटा.
p^{2}-\frac{307392749700}{1751804177}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
-\frac{5255412531}{2000000} च्या पुरकाक \frac{9221782491}{20000} गुणून -\frac{5255412531}{2000000} न \frac{9221782491}{20000} क भाग लावचो.
p^{2}-\frac{307392749700}{1751804177}p=-\frac{50000000}{53}
-\frac{5255412531}{2000000} च्या पुरकाक 2478968175 गुणून -\frac{5255412531}{2000000} न 2478968175 क भाग लावचो.
p^{2}-\frac{307392749700}{1751804177}p+\left(-\frac{153696374850}{1751804177}\right)^{2}=-\frac{50000000}{53}+\left(-\frac{153696374850}{1751804177}\right)^{2}
-\frac{153696374850}{1751804177} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -\frac{307392749700}{1751804177} क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{153696374850}{1751804177} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{50000000}{53}+\frac{23622575642031712522500}{3068817874554647329}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{153696374850}{1751804177} क वर्गमूळ लावचें.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{2871488626768012937477500}{3068817874554647329}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{23622575642031712522500}{3068817874554647329} क -\frac{50000000}{53} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
\left(p-\frac{153696374850}{1751804177}\right)^{2}=-\frac{2871488626768012937477500}{3068817874554647329}
गुणकपद p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(p-\frac{153696374850}{1751804177}\right)^{2}}=\sqrt{-\frac{2871488626768012937477500}{3068817874554647329}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
p-\frac{153696374850}{1751804177}=\frac{50\sqrt{1148595450707205174991}i}{1751804177} p-\frac{153696374850}{1751804177}=-\frac{50\sqrt{1148595450707205174991}i}{1751804177}
सोंपें करचें.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177} p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
समिकरणाच्या दोनूय कुशींतल्यान \frac{153696374850}{1751804177} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}