y खातीर सोडोवचें
y=\frac{135}{142}\approx 0.950704225
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
12\left(1\times 9+1\right)y+42y-20y=27\left(1\times 4+1\right)
समीकरणाच्यो दोनूय बाजू 108 वरवीं गुणाकार करच्यो, 9,18,27,4 चो सामको सामान्य विभाज्य.
12\left(9+1\right)y+42y-20y=27\left(1\times 4+1\right)
9 मेळोवंक 1 आनी 9 गुणचें.
12\times 10y+42y-20y=27\left(1\times 4+1\right)
10 मेळोवंक 9 आनी 1 ची बेरीज करची.
120y+42y-20y=27\left(1\times 4+1\right)
120 मेळोवंक 12 आनी 10 गुणचें.
162y-20y=27\left(1\times 4+1\right)
162y मेळोवंक 120y आनी 42y एकठांय करचें.
142y=27\left(1\times 4+1\right)
142y मेळोवंक 162y आनी -20y एकठांय करचें.
142y=27\left(4+1\right)
4 मेळोवंक 1 आनी 4 गुणचें.
142y=27\times 5
5 मेळोवंक 4 आनी 1 ची बेरीज करची.
142y=135
135 मेळोवंक 27 आनी 5 गुणचें.
y=\frac{135}{142}
दोनुय कुशींक 142 न भाग लावचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}