मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

-x^{2}+x+6=0
दोनूय वटांनी 6 जोडचे.
a+b=1 ab=-6=-6
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू -x^{2}+ax+bx+6 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,6 -2,3
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -6.
-1+6=5 -2+3=1
दरेक जोडयेखातीर गणीत मेजचें.
a=3 b=-2
जोडयेचें उत्तर जें दिता गणीत 1.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
-x^{2}+x+6 हें \left(-x^{2}+3x\right)+\left(-2x+6\right) बरोवचें.
-x\left(x-3\right)-2\left(x-3\right)
पयल्यात -xफॅक्टर आवट आनी -2 दुस-या गटात.
\left(x-3\right)\left(-x-2\right)
फॅक्टर आवट सामान्य शब्द x-3 वितरीत गूणधर्म वापरून.
x=3 x=-2
गणीताचें उत्तर सोदूंक, सोडोवचें x-3=0 आनी -x-2=0.
-x^{2}+x=-6
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
-x^{2}+x-\left(-6\right)=-6-\left(-6\right)
समिकरणाच्या दोनूय कुशींतल्यान 6 ची बेरीज करची.
-x^{2}+x-\left(-6\right)=0
तातूंतल्यानूच -6 वजा केल्यार 0 उरता.
-x^{2}+x+6=0
0 तल्यान -6 वजा करची.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर -1, b खातीर 1 आनी c खातीर 6 बदली घेवचे.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
1 वर्गमूळ.
x=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
-1क -4 फावटी गुणचें.
x=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
6क 4 फावटी गुणचें.
x=\frac{-1±\sqrt{25}}{2\left(-1\right)}
24 कडेन 1 ची बेरीज करची.
x=\frac{-1±5}{2\left(-1\right)}
25 चें वर्गमूळ घेवचें.
x=\frac{-1±5}{-2}
-1क 2 फावटी गुणचें.
x=\frac{4}{-2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-1±5}{-2} सोडोवचें. 5 कडेन -1 ची बेरीज करची.
x=-2
-2 न4 क भाग लावचो.
x=-\frac{6}{-2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-1±5}{-2} सोडोवचें. -1 तल्यान 5 वजा करची.
x=3
-2 न-6 क भाग लावचो.
x=-2 x=3
समिकरण आतां सुटावें जालें.
-x^{2}+x=-6
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
\frac{-x^{2}+x}{-1}=-\frac{6}{-1}
दोनुय कुशींक -1 न भाग लावचो.
x^{2}+\frac{1}{-1}x=-\frac{6}{-1}
-1 वरवीं भागाकार केल्यार -1 वरवीं केल्लो गुणाकार काडटा.
x^{2}-x=-\frac{6}{-1}
-1 न1 क भाग लावचो.
x^{2}-x=6
-1 न-6 क भाग लावचो.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -1 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{1}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{1}{2} क वर्गमूळ लावचें.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
\frac{1}{4} कडेन 6 ची बेरीज करची.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
गुणकपद x^{2}-x+\frac{1}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
सोंपें करचें.
x=3 x=-2
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{2} ची बेरीज करची.