x खातीर सोडोवचें
x=-1
x=6
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-6=-xx+x\times 5
विभागणी शुन्यची व्याख्या नाशिल्ल्यान अचल x हो 0 च्या समान आसूंक शकना. x वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
-6=-x^{2}+x\times 5
x^{2} मेळोवंक x आनी x गुणचें.
-x^{2}+x\times 5=-6
कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
-x^{2}+x\times 5+6=0
दोनूय वटांनी 6 जोडचे.
-x^{2}+5x+6=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर -1, b खातीर 5 आनी c खातीर 6 बदली घेवचे.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 6}}{2\left(-1\right)}
5 वर्गमूळ.
x=\frac{-5±\sqrt{25+4\times 6}}{2\left(-1\right)}
-1क -4 फावटी गुणचें.
x=\frac{-5±\sqrt{25+24}}{2\left(-1\right)}
6क 4 फावटी गुणचें.
x=\frac{-5±\sqrt{49}}{2\left(-1\right)}
24 कडेन 25 ची बेरीज करची.
x=\frac{-5±7}{2\left(-1\right)}
49 चें वर्गमूळ घेवचें.
x=\frac{-5±7}{-2}
-1क 2 फावटी गुणचें.
x=\frac{2}{-2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-5±7}{-2} सोडोवचें. 7 कडेन -5 ची बेरीज करची.
x=-1
-2 न2 क भाग लावचो.
x=-\frac{12}{-2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-5±7}{-2} सोडोवचें. -5 तल्यान 7 वजा करची.
x=6
-2 न-12 क भाग लावचो.
x=-1 x=6
समिकरण आतां सुटावें जालें.
-6=-xx+x\times 5
विभागणी शुन्यची व्याख्या नाशिल्ल्यान अचल x हो 0 च्या समान आसूंक शकना. x वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
-6=-x^{2}+x\times 5
x^{2} मेळोवंक x आनी x गुणचें.
-x^{2}+x\times 5=-6
कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
-x^{2}+5x=-6
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
\frac{-x^{2}+5x}{-1}=-\frac{6}{-1}
दोनुय कुशींक -1 न भाग लावचो.
x^{2}+\frac{5}{-1}x=-\frac{6}{-1}
-1 वरवीं भागाकार केल्यार -1 वरवीं केल्लो गुणाकार काडटा.
x^{2}-5x=-\frac{6}{-1}
-1 न5 क भाग लावचो.
x^{2}-5x=6
-1 न-6 क भाग लावचो.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -5 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{5}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{5}{2} क वर्गमूळ लावचें.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
\frac{25}{4} कडेन 6 ची बेरीज करची.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
गुणकपद x^{2}-5x+\frac{25}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
सोंपें करचें.
x=6 x=-1
समिकरणाच्या दोनूय कुशींतल्यान \frac{5}{2} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}