मूल्यांकन करचें
\frac{299}{567}\approx 0.527336861
गुणकपद
\frac{13 \cdot 23}{3 ^ {4} \cdot 7} = 0.527336860670194
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{10}{9} मेळोवंक \frac{1}{3} आनी \frac{7}{9} ची बेरीज करची.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{100}{81} मेळोवंक 2 चो \frac{10}{9} पॉवर मेजचो.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{2} मेळोवंक 1 आनी \frac{1}{2} वजा करचे.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{4} मेळोवंक 2 चो \frac{1}{2} पॉवर मेजचो.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-8 मेळोवंक 3 चो -2 पॉवर मेजचो.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-2 मेळोवंक \frac{1}{4} आनी -8 गुणचें.
-\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{7}{2} मेळोवंक -2 आनी \frac{3}{2} वजा करचे.
-\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{7}{2} च्या पुरकाक \frac{100}{81} गुणून -\frac{7}{2} न \frac{100}{81} क भाग लावचो.
-\left(-\frac{200}{567}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{200}{567} मेळोवंक \frac{100}{81} आनी -\frac{2}{7} गुणचें.
\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{200}{567} च्या विरुध्दार्थी अंक \frac{200}{567} आसा.
\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{36} मेळोवंक 2 चो -\frac{1}{6} पॉवर मेजचो.
\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{737}{2268} मेळोवंक \frac{200}{567} आनी \frac{1}{36} वजा करचे.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{20} मेळोवंक \frac{1}{4} आनी \frac{1}{5} वजा करचे.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{3}{5} मेळोवंक 1 आनी \frac{2}{5} वजा करचे.
\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{9}{25} मेळोवंक 2 चो \frac{3}{5} पॉवर मेजचो.
\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{9}{25} च्या पुरकाक \frac{1}{20} गुणून \frac{9}{25} न \frac{1}{20} क भाग लावचो.
\frac{737}{2268}+\frac{5}{36}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{5}{36} मेळोवंक \frac{1}{20} आनी \frac{25}{9} गुणचें.
\frac{263}{567}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{263}{567} मेळोवंक \frac{737}{2268} आनी \frac{5}{36} ची बेरीज करची.
\frac{263}{567}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{9} मेळोवंक \frac{1}{3} आनी \frac{2}{9} वजा करचे.
\frac{263}{567}-\frac{\frac{1}{9}}{-\frac{7}{4}}
-\frac{7}{4} मेळोवंक \frac{1}{8} आनी \frac{15}{8} वजा करचे.
\frac{263}{567}-\frac{1}{9}\left(-\frac{4}{7}\right)
-\frac{7}{4} च्या पुरकाक \frac{1}{9} गुणून -\frac{7}{4} न \frac{1}{9} क भाग लावचो.
\frac{263}{567}-\left(-\frac{4}{63}\right)
-\frac{4}{63} मेळोवंक \frac{1}{9} आनी -\frac{4}{7} गुणचें.
\frac{263}{567}+\frac{4}{63}
-\frac{4}{63} च्या विरुध्दार्थी अंक \frac{4}{63} आसा.
\frac{299}{567}
\frac{299}{567} मेळोवंक \frac{263}{567} आनी \frac{4}{63} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}