मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वांटचें

-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{10}{9} मेळोवंक \frac{1}{3} आनी \frac{7}{9} ची बेरीज करची.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{100}{81} मेळोवंक 2 चो \frac{10}{9} पॉवर मेजचो.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{2} मेळोवंक 1 आनी \frac{1}{2} वजा करचे.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{4} मेळोवंक 2 चो \frac{1}{2} पॉवर मेजचो.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-8 मेळोवंक 3 चो -2 पॉवर मेजचो.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-2 मेळोवंक \frac{1}{4} आनी -8 गुणचें.
-\frac{\frac{100}{81}}{-\frac{7}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{7}{2} मेळोवंक -2 आनी \frac{3}{2} वजा करचे.
-\frac{100}{81}\left(-\frac{2}{7}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{7}{2} च्या पुरकाक \frac{100}{81} गुणून -\frac{7}{2} न \frac{100}{81} क भाग लावचो.
-\left(-\frac{200}{567}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{200}{567} मेळोवंक \frac{100}{81} आनी -\frac{2}{7} गुणचें.
\frac{200}{567}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{200}{567} च्या विरुध्दार्थी अंक \frac{200}{567} आसा.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{36} मेळोवंक 2 चो -\frac{1}{6} पॉवर मेजचो.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{20} मेळोवंक \frac{1}{4} आनी \frac{1}{5} वजा करचे.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{3}{5} मेळोवंक 1 आनी \frac{2}{5} वजा करचे.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\frac{9}{25}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{9}{25} मेळोवंक 2 चो \frac{3}{5} पॉवर मेजचो.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{1}{20}\times \frac{25}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{9}{25} च्या पुरकाक \frac{1}{20} गुणून \frac{9}{25} न \frac{1}{20} क भाग लावचो.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{5}{36}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{5}{36} मेळोवंक \frac{1}{20} आनी \frac{25}{9} गुणचें.
\frac{200}{567}+\left(\frac{1}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{9} मेळोवंक -\frac{1}{36} आनी \frac{5}{36} ची बेरीज करची.
\frac{200}{567}+\frac{1}{81}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{81} मेळोवंक 2 चो \frac{1}{9} पॉवर मेजचो.
\frac{23}{63}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{23}{63} मेळोवंक \frac{200}{567} आनी \frac{1}{81} ची बेरीज करची.
\frac{23}{63}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{9} मेळोवंक \frac{1}{3} आनी \frac{2}{9} वजा करचे.
\frac{23}{63}-\frac{\frac{1}{9}}{-\frac{7}{4}}
-\frac{7}{4} मेळोवंक \frac{1}{8} आनी \frac{15}{8} वजा करचे.
\frac{23}{63}-\frac{1}{9}\left(-\frac{4}{7}\right)
-\frac{7}{4} च्या पुरकाक \frac{1}{9} गुणून -\frac{7}{4} न \frac{1}{9} क भाग लावचो.
\frac{23}{63}-\left(-\frac{4}{63}\right)
-\frac{4}{63} मेळोवंक \frac{1}{9} आनी -\frac{4}{7} गुणचें.
\frac{23}{63}+\frac{4}{63}
-\frac{4}{63} च्या विरुध्दार्थी अंक \frac{4}{63} आसा.
\frac{3}{7}
\frac{3}{7} मेळोवंक \frac{23}{63} आनी \frac{4}{63} ची बेरीज करची.