मुखेल आशय वगडाय
गुणकपद
Tick mark Image
मूल्यांकन करचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

a+b=7 ab=1\left(-8\right)=-8
गट करून गणीत फॅक्टर करचो. पयली, गणीत x^{2}+ax+bx-8 म्हूण परत बरोवपाची गरज आसता. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,8 -2,4
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -8.
-1+8=7 -2+4=2
दरेक जोडयेखातीर गणीत मेजचें.
a=-1 b=8
जोडयेचें उत्तर जें दिता गणीत 7.
\left(x^{2}-x\right)+\left(8x-8\right)
x^{2}+7x-8 हें \left(x^{2}-x\right)+\left(8x-8\right) बरोवचें.
x\left(x-1\right)+8\left(x-1\right)
पयल्यात xफॅक्टर आवट आनी 8 दुस-या गटात.
\left(x-1\right)\left(x+8\right)
फॅक्टर आवट सामान्य शब्द x-1 वितरीत गूणधर्म वापरून.
x^{2}+7x-8=0
क्वॉड्रेटिक पोलिनोमियल ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) हें ट्रांसफोर्मेशन वापरून फॅक्टर्ड करूंक शकतात, जंय x_{1} आनी x_{2} हीं ax^{2}+bx+c=0.क्वॉड्रेटिक समीकरणाचीं समाधानां आसतात.
x=\frac{-7±\sqrt{7^{2}-4\left(-8\right)}}{2}
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-7±\sqrt{49-4\left(-8\right)}}{2}
7 वर्गमूळ.
x=\frac{-7±\sqrt{49+32}}{2}
-8क -4 फावटी गुणचें.
x=\frac{-7±\sqrt{81}}{2}
32 कडेन 49 ची बेरीज करची.
x=\frac{-7±9}{2}
81 चें वर्गमूळ घेवचें.
x=\frac{2}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-7±9}{2} सोडोवचें. 9 कडेन -7 ची बेरीज करची.
x=1
2 न2 क भाग लावचो.
x=-\frac{16}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-7±9}{2} सोडोवचें. -7 तल्यान 9 वजा करची.
x=-8
2 न-16 क भाग लावचो.
x^{2}+7x-8=\left(x-1\right)\left(x-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ ऍक्सप्रेशनाचे फॅक्टर करचें. x_{1} खातीर 1 आनी x_{2} खातीर -8 बदली करचीं.
x^{2}+7x-8=\left(x-1\right)\left(x+8\right)
p-\left(-q\right) नमुन्याची सगलीं ऍक्सप्रेशनां p+q कडेन सोंपीं करचीं.