मुखेल आशय वगडाय
m खातीर सोडोवचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

4^{2}m^{2}-3\times 4\left(2m^{2}-2\right)>0
\left(4m\right)^{2} विस्तारीत करचो.
16m^{2}-3\times 4\left(2m^{2}-2\right)>0
16 मेळोवंक 2 चो 4 पॉवर मेजचो.
16m^{2}-12\left(2m^{2}-2\right)>0
12 मेळोवंक 3 आनी 4 गुणचें.
16m^{2}-24m^{2}+24>0
2m^{2}-2 न -12 गुणपाक विभाजक विशमाचो वापर करचो.
-8m^{2}+24>0
-8m^{2} मेळोवंक 16m^{2} आनी -24m^{2} एकठांय करचें.
8m^{2}-24<0
उच्च पावराचो कोएफिसियंट -8m^{2}+24 पोझिटिवांत करूंक -1 त असमानातयेचो गूणाकार करचो. -1 नेगेटिव आशिल्ल्यान, असमानायेची दिका बदल्ल्या.
m^{2}<3
दोनूय वटांनी 3 जोडचे.
m^{2}<\left(\sqrt{3}\right)^{2}
3 चें वर्गमूळ मेजचें आनी \sqrt{3} मेळोवचें. 3 हें \left(\sqrt{3}\right)^{2} बरोवचें.
|m|<\sqrt{3}
असमानताय |m|<\sqrt{3} खातीर धरता.
m\in \left(-\sqrt{3},\sqrt{3}\right)
|m|<\sqrt{3} हें m\in \left(-\sqrt{3},\sqrt{3}\right) बरोवचें.