मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
विस्तार करचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
a^{4}-6a^{2}b^{2}+9b^{4} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
8a^{4} मेळोवंक 9a^{4} आनी -a^{4} एकठांय करचें.
8a^{4}+b^{4}-9b^{4}
0 मेळोवंक -6a^{2}b^{2} आनी 6a^{2}b^{2} एकठांय करचें.
8a^{4}-8b^{4}
-8b^{4} मेळोवंक b^{4} आनी -9b^{4} एकठांय करचें.
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
a^{4}-6a^{2}b^{2}+9b^{4} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
8a^{4} मेळोवंक 9a^{4} आनी -a^{4} एकठांय करचें.
8a^{4}+b^{4}-9b^{4}
0 मेळोवंक -6a^{2}b^{2} आनी 6a^{2}b^{2} एकठांय करचें.
8a^{4}-8b^{4}
-8b^{4} मेळोवंक b^{4} आनी -9b^{4} एकठांय करचें.