मूल्यांकन करचें
-\frac{419}{126}\approx -3.325396825
गुणकपद
-\frac{419}{126} = -3\frac{41}{126} = -3.3253968253968256
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}+|-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{2} मेळोवंक 1 आनी \frac{1}{2} वजा करचे.
\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}+|-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{4} मेळोवंक 2 चो \frac{1}{2} पॉवर मेजचो.
\frac{1}{4}\left(-8\right)-\frac{3}{2}+|-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-8 मेळोवंक 3 चो -2 पॉवर मेजचो.
-2-\frac{3}{2}+|-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-2 मेळोवंक \frac{1}{4} आनी -8 गुणचें.
-\frac{7}{2}+|-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{7}{2} मेळोवंक -2 आनी \frac{3}{2} वजा करचे.
-\frac{7}{2}+|-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{36} मेळोवंक 2 चो -\frac{1}{6} पॉवर मेजचो.
-\frac{7}{2}+|-\frac{1}{36}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{20} मेळोवंक \frac{1}{4} आनी \frac{1}{5} वजा करचे.
-\frac{7}{2}+|-\frac{1}{36}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{3}{5} मेळोवंक 1 आनी \frac{2}{5} वजा करचे.
-\frac{7}{2}+|-\frac{1}{36}+\frac{\frac{1}{20}}{\frac{9}{25}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{9}{25} मेळोवंक 2 चो \frac{3}{5} पॉवर मेजचो.
-\frac{7}{2}+|-\frac{1}{36}+\frac{1}{20}\times \frac{25}{9}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{9}{25} च्या पुरकाक \frac{1}{20} गुणून \frac{9}{25} न \frac{1}{20} क भाग लावचो.
-\frac{7}{2}+|-\frac{1}{36}+\frac{5}{36}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{5}{36} मेळोवंक \frac{1}{20} आनी \frac{25}{9} गुणचें.
-\frac{7}{2}+|\frac{1}{9}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{9} मेळोवंक -\frac{1}{36} आनी \frac{5}{36} ची बेरीज करची.
-\frac{7}{2}+\frac{1}{9}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
जेन्ना a\geq 0 आसता तेन्ना a आसा a, वा a<0 आसत तेन्ना -a. \frac{1}{9} चें अस्सल मूल्य \frac{1}{9} आसा.
-\frac{61}{18}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{61}{18} मेळोवंक -\frac{7}{2} आनी \frac{1}{9} ची बेरीज करची.
-\frac{61}{18}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{9} मेळोवंक \frac{1}{3} आनी \frac{2}{9} वजा करचे.
-\frac{61}{18}-\frac{\frac{1}{9}}{-\frac{7}{4}}
-\frac{7}{4} मेळोवंक \frac{1}{8} आनी \frac{15}{8} वजा करचे.
-\frac{61}{18}-\frac{1}{9}\left(-\frac{4}{7}\right)
-\frac{7}{4} च्या पुरकाक \frac{1}{9} गुणून -\frac{7}{4} न \frac{1}{9} क भाग लावचो.
-\frac{61}{18}-\left(-\frac{4}{63}\right)
-\frac{4}{63} मेळोवंक \frac{1}{9} आनी -\frac{4}{7} गुणचें.
-\frac{61}{18}+\frac{4}{63}
-\frac{4}{63} च्या विरुध्दार्थी अंक \frac{4}{63} आसा.
-\frac{419}{126}
-\frac{419}{126} मेळोवंक -\frac{61}{18} आनी \frac{4}{63} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}