मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

-6-x^{2}=-5x-2x^{2}
-\frac{5}{2}-x न 2x गुणपाक विभाजक विशमाचो वापर करचो.
-6-x^{2}+5x=-2x^{2}
दोनूय वटांनी 5x जोडचे.
-6-x^{2}+5x+2x^{2}=0
दोनूय वटांनी 2x^{2} जोडचे.
-6+x^{2}+5x=0
x^{2} मेळोवंक -x^{2} आनी 2x^{2} एकठांय करचें.
x^{2}+5x-6=0
प्रमाणित फॉर्मात पॉलिनोमियल परत मांडचो. उच्च तें कमी पॉवर क्रमात संज्ञा मांडच्यो.
a+b=5 ab=-6
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}+5x-6 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,6 -2,3
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -6.
-1+6=5 -2+3=1
दरेक जोडयेखातीर गणीत मेजचें.
a=-1 b=6
जोडयेचें उत्तर जें दिता गणीत 5.
\left(x-1\right)\left(x+6\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=1 x=-6
गणीताचें उत्तर सोदूंक, सोडोवचें x-1=0 आनी x+6=0.
-6-x^{2}=-5x-2x^{2}
-\frac{5}{2}-x न 2x गुणपाक विभाजक विशमाचो वापर करचो.
-6-x^{2}+5x=-2x^{2}
दोनूय वटांनी 5x जोडचे.
-6-x^{2}+5x+2x^{2}=0
दोनूय वटांनी 2x^{2} जोडचे.
-6+x^{2}+5x=0
x^{2} मेळोवंक -x^{2} आनी 2x^{2} एकठांय करचें.
x^{2}+5x-6=0
प्रमाणित फॉर्मात पॉलिनोमियल परत मांडचो. उच्च तें कमी पॉवर क्रमात संज्ञा मांडच्यो.
a+b=5 ab=1\left(-6\right)=-6
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx-6 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,6 -2,3
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -6.
-1+6=5 -2+3=1
दरेक जोडयेखातीर गणीत मेजचें.
a=-1 b=6
जोडयेचें उत्तर जें दिता गणीत 5.
\left(x^{2}-x\right)+\left(6x-6\right)
x^{2}+5x-6 हें \left(x^{2}-x\right)+\left(6x-6\right) बरोवचें.
x\left(x-1\right)+6\left(x-1\right)
पयल्यात xफॅक्टर आवट आनी 6 दुस-या गटात.
\left(x-1\right)\left(x+6\right)
फॅक्टर आवट सामान्य शब्द x-1 वितरीत गूणधर्म वापरून.
x=1 x=-6
गणीताचें उत्तर सोदूंक, सोडोवचें x-1=0 आनी x+6=0.
-6-x^{2}=-5x-2x^{2}
-\frac{5}{2}-x न 2x गुणपाक विभाजक विशमाचो वापर करचो.
-6-x^{2}+5x=-2x^{2}
दोनूय वटांनी 5x जोडचे.
-6-x^{2}+5x+2x^{2}=0
दोनूय वटांनी 2x^{2} जोडचे.
-6+x^{2}+5x=0
x^{2} मेळोवंक -x^{2} आनी 2x^{2} एकठांय करचें.
x^{2}+5x-6=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर 5 आनी c खातीर -6 बदली घेवचे.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
5 वर्गमूळ.
x=\frac{-5±\sqrt{25+24}}{2}
-6क -4 फावटी गुणचें.
x=\frac{-5±\sqrt{49}}{2}
24 कडेन 25 ची बेरीज करची.
x=\frac{-5±7}{2}
49 चें वर्गमूळ घेवचें.
x=\frac{2}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-5±7}{2} सोडोवचें. 7 कडेन -5 ची बेरीज करची.
x=1
2 न2 क भाग लावचो.
x=-\frac{12}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-5±7}{2} सोडोवचें. -5 तल्यान 7 वजा करची.
x=-6
2 न-12 क भाग लावचो.
x=1 x=-6
समिकरण आतां सुटावें जालें.
-6-x^{2}=-5x-2x^{2}
-\frac{5}{2}-x न 2x गुणपाक विभाजक विशमाचो वापर करचो.
-6-x^{2}+5x=-2x^{2}
दोनूय वटांनी 5x जोडचे.
-6-x^{2}+5x+2x^{2}=0
दोनूय वटांनी 2x^{2} जोडचे.
-6+x^{2}+5x=0
x^{2} मेळोवंक -x^{2} आनी 2x^{2} एकठांय करचें.
x^{2}+5x=6
दोनूय वटांनी 6 जोडचे. किदेंय अदीक शुन्य तें दितां.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=6+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो 5 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी \frac{5}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}+5x+\frac{25}{4}=6+\frac{25}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन \frac{5}{2} क वर्गमूळ लावचें.
x^{2}+5x+\frac{25}{4}=\frac{49}{4}
\frac{25}{4} कडेन 6 ची बेरीज करची.
\left(x+\frac{5}{2}\right)^{2}=\frac{49}{4}
गुणकपद x^{2}+5x+\frac{25}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x+\frac{5}{2}=\frac{7}{2} x+\frac{5}{2}=-\frac{7}{2}
सोंपें करचें.
x=1 x=-6
समिकरणाच्या दोनूय कुशींतल्यान \frac{5}{2} वजा करचें.