x खातीर सोडोवचें (जटील सोल्यूशन)
\left\{\begin{matrix}x=\frac{\sqrt{\lambda \left(\lambda ^{3}+4\lambda -4\right)}-\lambda ^{2}}{2\left(\lambda -1\right)}\text{; }x=-\frac{\sqrt{\lambda \left(\lambda ^{3}+4\lambda -4\right)}+\lambda ^{2}}{2\left(\lambda -1\right)}\text{, }&\lambda \neq 1\\x=1\text{, }&\lambda =1\end{matrix}\right.
λ खातीर सोडोवचें (जटील सोल्यूशन)
\left\{\begin{matrix}\lambda =\frac{\sqrt{x^{4}+4x^{3}-2x^{2}+1}-x^{2}+1}{2x}\text{; }\lambda =\frac{-\sqrt{x^{4}+4x^{3}-2x^{2}+1}-x^{2}+1}{2x}\text{, }&x\neq 0\\\lambda =0\text{, }&x=0\end{matrix}\right.
x खातीर सोडोवचें
\left\{\begin{matrix}x=\frac{\sqrt{\lambda \left(\lambda ^{3}+4\lambda -4\right)}-\lambda ^{2}}{2\left(\lambda -1\right)}\text{; }x=-\frac{\sqrt{\lambda \left(\lambda ^{3}+4\lambda -4\right)}+\lambda ^{2}}{2\left(\lambda -1\right)}\text{, }&\lambda \neq 1\text{ and }\lambda ^{4}+4\lambda ^{2}-4\lambda \geq 0\\x=1\text{, }&\lambda =1\end{matrix}\right.
λ खातीर सोडोवचें
\left\{\begin{matrix}\lambda =\frac{\sqrt{x^{4}+4x^{3}-2x^{2}+1}-x^{2}+1}{2x}\text{; }\lambda =\frac{-\sqrt{x^{4}+4x^{3}-2x^{2}+1}-x^{2}+1}{2x}\text{, }&x\neq 0\text{ and }x^{4}+4x^{3}-2x^{2}+1\geq 0\\\lambda =0\text{, }&x=0\end{matrix}\right.
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}