मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. z चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\left(\frac{1}{z^{3}}\right)^{-1}
z हें z^{-2}z^{3} बरोवचें. न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय z^{-2} रद्द करचो.
\frac{1^{-1}}{\left(z^{3}\right)^{-1}}
\frac{1}{z^{3}} पॉवर दिवंक, न्युमरेटर आनी डिनोमिनेटर दोनूय पॉवर मेरेन वाडोवचे आनी मागीर भाग लावचो.
\frac{1^{-1}}{z^{-3}}
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. -3 मेळोवंक 3 तल्यान -1 गुणचो.
\frac{1}{z^{-3}}
1 मेळोवंक -1 चो 1 पॉवर मेजचो.
-\left(\frac{z^{-2}}{z^{1}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}z}(\frac{z^{-2}}{z^{1}})
जर F हें f\left(u\right) आनी u=g\left(x\right) ह्या दोन फरकांच्या कार्याचें मिश्रण आसा, तें म्हणल्यार, जर F\left(x\right)=f\left(g\left(x\right)\right), मागीर u पटीन g हो x च्या संबंदीत आसपी F चो व्यत्पन्न हो f चो व्यत्पन्न म्हणल्यार, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{-\left(\frac{z^{-2}}{z^{1}}\right)^{-1-1}\left(z^{1}\frac{\mathrm{d}}{\mathrm{d}z}(z^{-2})-z^{-2}\frac{\mathrm{d}}{\mathrm{d}z}(z^{1})\right)}{\left(z^{1}\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{-\left(\frac{z^{-2}}{z^{1}}\right)^{-1-1}\left(z^{1}\left(-2\right)z^{-2-1}-z^{-2}z^{1-1}\right)}{\left(z^{1}\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{-\left(\frac{z^{-2}}{z^{1}}\right)^{-2}\left(-2z^{1}z^{-3}-z^{-2}z^{1-1}\right)}{\left(z^{1}\right)^{2}}
-2z^{-2-1}क z^{1} फावटी गुणचें.
\frac{-\left(\frac{z^{-2}}{z^{1}}\right)^{-2}\left(-2z^{-2}-z^{-2}z^{0}\right)}{\left(z^{1}\right)^{2}}
z^{1-1}क z^{-2} फावटी गुणचें.
\frac{-\left(\frac{z^{-2}}{z^{1}}\right)^{-2}\left(-2z^{-2}-z^{-2}\right)}{\left(z^{1}\right)^{2}}
सोंपें करचें.
\frac{-\left(\frac{z^{-2}}{z}\right)^{-2}\left(-2z^{-2}-z^{-2}\right)}{z^{2}}
t खंयच्याय शब्दा खातीर, t^{1}=t.