मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} विस्तारावचें \left(\frac{1}{3}x-\frac{1}{2}\right)^{3}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
विचारांत घेयात \left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. \frac{1}{2} वर्गमूळ.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x\right)^{2} विस्तारीत करचो.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{9} मेळोवंक 2 चो \frac{1}{3} पॉवर मेजचो.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{9}x^{2}-\frac{1}{4} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
-\frac{5}{18}x^{2} मेळोवंक -\frac{1}{6}x^{2} आनी -\frac{1}{9}x^{2} एकठांय करचें.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{8} मेळोवंक -\frac{1}{8} आनी \frac{1}{4} ची बेरीज करची.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
\frac{1}{3}x-\frac{5}{2} न -\frac{1}{9}x^{2} गुणपाक विभाजक विशमाचो वापर करचो.
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
0 मेळोवंक \frac{1}{27}x^{3} आनी -\frac{1}{27}x^{3} एकठांय करचें.
\frac{1}{4}x+\frac{1}{8}=0
0 मेळोवंक -\frac{5}{18}x^{2} आनी \frac{5}{18}x^{2} एकठांय करचें.
\frac{1}{4}x=-\frac{1}{8}
दोनूय कुशींतल्यान \frac{1}{8} वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x=-\frac{1}{8}\times 4
दोनूय कुशीनीं 4 न गुणचें, \frac{1}{4} चो रेसिप्रोकल.
x=-\frac{1}{2}
-\frac{1}{2} मेळोवंक -\frac{1}{8} आनी 4 गुणचें.