मूल्यांकन करचें
\frac{1}{16r^{2}}
w.r.t. r चो फरक काडचो
-\frac{1}{8r^{3}}
प्रस्नमाची
Algebra
कडेन 5 समस्या समान:
( \frac { - r ^ { 4 } } { 64 r ^ { 7 } } ) ^ { \frac { 2 } { 3 } }
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
\frac{-r^{4}}{64r^{7}} पॉवर दिवंक, न्युमरेटर आनी डिनोमिनेटर दोनूय पॉवर मेरेन वाडोवचे आनी मागीर भाग लावचो.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
\left(64r^{7}\right)^{\frac{2}{3}} विस्तारीत करचो.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. \frac{14}{3} मेळोवंक 7 तल्यान \frac{2}{3} गुणचो.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
16 मेळोवंक \frac{2}{3} चो 64 पॉवर मेजचो.
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
\left(-r^{4}\right)^{\frac{2}{3}} विस्तारीत करचो.
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. \frac{8}{3} मेळोवंक 4 तल्यान \frac{2}{3} गुणचो.
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
1 मेळोवंक \frac{2}{3} चो -1 पॉवर मेजचो.
\frac{1}{16r^{2}}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय r^{\frac{8}{3}} रद्द करचो.
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
जर F हें f\left(u\right) आनी u=g\left(x\right) ह्या दोन फरकांच्या कार्याचें मिश्रण आसा, तें म्हणल्यार, जर F\left(x\right)=f\left(g\left(x\right)\right), मागीर u पटीन g हो x च्या संबंदीत आसपी F चो व्यत्पन्न हो f चो व्यत्पन्न म्हणल्यार, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
4\left(-1\right)r^{4-1}क 64r^{7} फावटी गुणचें.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
7\times 64r^{7-1}क -r^{4} फावटी गुणचें.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
सोंपें करचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}