मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. F चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
3 मेळोवंक 2 आनी 1 ची बेरीज करची.
F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
5 मेळोवंक 4 आनी 1 ची बेरीज करची.
F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
15 मेळोवंक 3 आनी 5 गुणचें.
F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
16 मेळोवंक 4 चो 2 पॉवर मेजचो.
F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
17 मेळोवंक 16 आनी 1 ची बेरीज करची.
F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
255 मेळोवंक 15 आनी 17 गुणचें.
F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
256 मेळोवंक 8 चो 2 पॉवर मेजचो.
F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1
257 मेळोवंक 256 आनी 1 ची बेरीज करची.
F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1
65535 मेळोवंक 255 आनी 257 गुणचें.
F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1
65536 मेळोवंक 16 चो 2 पॉवर मेजचो.
F\times 65535\times 65537\left(2^{32}+1\right)+1
65537 मेळोवंक 65536 आनी 1 ची बेरीज करची.
F\times 4294967295\left(2^{32}+1\right)+1
4294967295 मेळोवंक 65535 आनी 65537 गुणचें.
F\times 4294967295\left(4294967296+1\right)+1
4294967296 मेळोवंक 32 चो 2 पॉवर मेजचो.
F\times 4294967295\times 4294967297+1
4294967297 मेळोवंक 4294967296 आनी 1 ची बेरीज करची.
F\times 18446744073709551615+1
18446744073709551615 मेळोवंक 4294967295 आनी 4294967297 गुणचें.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
3 मेळोवंक 2 आनी 1 ची बेरीज करची.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
5 मेळोवंक 4 आनी 1 ची बेरीज करची.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
15 मेळोवंक 3 आनी 5 गुणचें.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
16 मेळोवंक 4 चो 2 पॉवर मेजचो.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
17 मेळोवंक 16 आनी 1 ची बेरीज करची.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
255 मेळोवंक 15 आनी 17 गुणचें.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
256 मेळोवंक 8 चो 2 पॉवर मेजचो.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
257 मेळोवंक 256 आनी 1 ची बेरीज करची.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
65535 मेळोवंक 255 आनी 257 गुणचें.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1)
65536 मेळोवंक 16 चो 2 पॉवर मेजचो.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\times 65537\left(2^{32}+1\right)+1)
65537 मेळोवंक 65536 आनी 1 ची बेरीज करची.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(2^{32}+1\right)+1)
4294967295 मेळोवंक 65535 आनी 65537 गुणचें.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(4294967296+1\right)+1)
4294967296 मेळोवंक 32 चो 2 पॉवर मेजचो.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\times 4294967297+1)
4294967297 मेळोवंक 4294967296 आनी 1 ची बेरीज करची.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 18446744073709551615+1)
18446744073709551615 मेळोवंक 4294967295 आनी 4294967297 गुणचें.
18446744073709551615F^{1-1}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
18446744073709551615F^{0}
1 तल्यान 1 वजा करची.
18446744073709551615\times 1
0 सोडून t खंयच्याय शब्दा खातीर, t^{0}=1.
18446744073709551615
t खंयच्याय शब्दा खातीर, t\times 1=t आनी 1t=t .