मुखेल आशय वगडाय
गुणकपद
Tick mark Image
मूल्यांकन करचें
Tick mark Image
ग्राफ
प्रस्नमाची
Polynomial

वॅब सोदांतल्यान समान समस्या

वांटचें

a+b=-2 ab=1\left(-3\right)=-3
गट करून गणीत फॅक्टर करचो. पयली, गणीत x^{2}+ax+bx-3 म्हूण परत बरोवपाची गरज आसता. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
a=-3 b=1
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. फकत तशें प्रणाली उत्तर आसा.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 हें \left(x^{2}-3x\right)+\left(x-3\right) बरोवचें.
x\left(x-3\right)+x-3
फॅक्टर आवट x त x^{2}-3x.
\left(x-3\right)\left(x+1\right)
फॅक्टर आवट सामान्य शब्द x-3 वितरीत गूणधर्म वापरून.
x^{2}-2x-3=0
क्वॉड्रेटिक पोलिनोमियल ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) हें ट्रांसफोर्मेशन वापरून फॅक्टर्ड करूंक शकतात, जंय x_{1} आनी x_{2} हीं ax^{2}+bx+c=0.क्वॉड्रेटिक समीकरणाचीं समाधानां आसतात.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
-2 वर्गमूळ.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-3क -4 फावटी गुणचें.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
12 कडेन 4 ची बेरीज करची.
x=\frac{-\left(-2\right)±4}{2}
16 चें वर्गमूळ घेवचें.
x=\frac{2±4}{2}
-2 च्या विरुध्दार्थी अंक 2 आसा.
x=\frac{6}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{2±4}{2} सोडोवचें. 4 कडेन 2 ची बेरीज करची.
x=3
2 न6 क भाग लावचो.
x=-\frac{2}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{2±4}{2} सोडोवचें. 2 तल्यान 4 वजा करची.
x=-1
2 न-2 क भाग लावचो.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ ऍक्सप्रेशन फॅक्टर करचें. x_{1} च्या सुवातेर 3 आनी x_{2} च्या सुवातेर -1 घालचें.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
p-\left(-q\right) नमुन्याची सगलीं ऍक्सप्रेशनां p+q कडेन सोंपीं करचीं.