मुखेल आशय वगडाय
गुणकपद
Tick mark Image
मूल्यांकन करचें
Tick mark Image
ग्राफ
प्रस्नमाची
Polynomial

वॅब सोदांतल्यान समान समस्या

वांटचें

a+b=-11 ab=1\left(-26\right)=-26
गट करून गणीत फॅक्टर करचो. पयली, गणीत x^{2}+ax+bx-26 म्हूण परत बरोवपाची गरज आसता. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-26 2,-13
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -26.
1-26=-25 2-13=-11
दरेक जोडयेखातीर गणीत मेजचें.
a=-13 b=2
जोडयेचें उत्तर जें दिता गणीत -11.
\left(x^{2}-13x\right)+\left(2x-26\right)
x^{2}-11x-26 हें \left(x^{2}-13x\right)+\left(2x-26\right) बरोवचें.
x\left(x-13\right)+2\left(x-13\right)
पयल्यात xफॅक्टर आवट आनी 2 दुस-या गटात.
\left(x-13\right)\left(x+2\right)
फॅक्टर आवट सामान्य शब्द x-13 वितरीत गूणधर्म वापरून.
x^{2}-11x-26=0
क्वॉड्रेटिक पोलिनोमियल ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) हें ट्रांसफोर्मेशन वापरून फॅक्टर्ड करूंक शकतात, जंय x_{1} आनी x_{2} हीं ax^{2}+bx+c=0.क्वॉड्रेटिक समीकरणाचीं समाधानां आसतात.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-26\right)}}{2}
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-26\right)}}{2}
-11 वर्गमूळ.
x=\frac{-\left(-11\right)±\sqrt{121+104}}{2}
-26क -4 फावटी गुणचें.
x=\frac{-\left(-11\right)±\sqrt{225}}{2}
104 कडेन 121 ची बेरीज करची.
x=\frac{-\left(-11\right)±15}{2}
225 चें वर्गमूळ घेवचें.
x=\frac{11±15}{2}
-11 च्या विरुध्दार्थी अंक 11 आसा.
x=\frac{26}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{11±15}{2} सोडोवचें. 15 कडेन 11 ची बेरीज करची.
x=13
2 न26 क भाग लावचो.
x=-\frac{4}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{11±15}{2} सोडोवचें. 11 तल्यान 15 वजा करची.
x=-2
2 न-4 क भाग लावचो.
x^{2}-11x-26=\left(x-13\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ ऍक्सप्रेशनाचे फॅक्टर करचें. x_{1} खातीर 13 आनी x_{2} खातीर -2 बदली करचीं.
x^{2}-11x-26=\left(x-13\right)\left(x+2\right)
p-\left(-q\right) नमुन्याची सगलीं ऍक्सप्रेशनां p+q कडेन सोंपीं करचीं.