मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x^{2}-x-3=0
2 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
a+b=-1 ab=2\left(-3\right)=-6
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू 2x^{2}+ax+bx-3 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-6 2,-3
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -6.
1-6=-5 2-3=-1
दरेक जोडयेखातीर गणीत मेजचें.
a=-3 b=2
जोडयेचें उत्तर जें दिता गणीत -1.
\left(2x^{2}-3x\right)+\left(2x-3\right)
2x^{2}-x-3 हें \left(2x^{2}-3x\right)+\left(2x-3\right) बरोवचें.
x\left(2x-3\right)+2x-3
फॅक्टर आवट x त 2x^{2}-3x.
\left(2x-3\right)\left(x+1\right)
फॅक्टर आवट सामान्य शब्द 2x-3 वितरीत गूणधर्म वापरून.
x=\frac{3}{2} x=-1
गणीताचें उत्तर सोदूंक, सोडोवचें 2x-3=0 आनी x+1=0.
2x^{2}-x-3=0
2 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 2, b खातीर -1 आनी c खातीर -3 बदली घेवचे.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
2क -4 फावटी गुणचें.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
-3क -8 फावटी गुणचें.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
24 कडेन 1 ची बेरीज करची.
x=\frac{-\left(-1\right)±5}{2\times 2}
25 चें वर्गमूळ घेवचें.
x=\frac{1±5}{2\times 2}
-1 च्या विरुध्दार्थी अंक 1 आसा.
x=\frac{1±5}{4}
2क 2 फावटी गुणचें.
x=\frac{6}{4}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{1±5}{4} सोडोवचें. 5 कडेन 1 ची बेरीज करची.
x=\frac{3}{2}
2 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{6}{4} उणो करचो.
x=-\frac{4}{4}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{1±5}{4} सोडोवचें. 1 तल्यान 5 वजा करची.
x=-1
4 न-4 क भाग लावचो.
x=\frac{3}{2} x=-1
समिकरण आतां सुटावें जालें.
2x^{2}-x-3=0
2 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
2x^{2}-x=3
दोनूय वटांनी 3 जोडचे. किदेंय अदीक शुन्य तें दितां.
\frac{2x^{2}-x}{2}=\frac{3}{2}
दोनुय कुशींक 2 न भाग लावचो.
x^{2}-\frac{1}{2}x=\frac{3}{2}
2 वरवीं भागाकार केल्यार 2 वरवीं केल्लो गुणाकार काडटा.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -\frac{1}{2} क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{1}{4} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{1}{4} क वर्गमूळ लावचें.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{1}{16} क \frac{3}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
गुणकपद x^{2}-\frac{1}{2}x+\frac{1}{16}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
सोंपें करचें.
x=\frac{3}{2} x=-1
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{4} ची बेरीज करची.