मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ
प्रस्नमाची
Quadratic Equation

वॅब सोदांतल्यान समान समस्या

वांटचें

x^{2}-x=2
दोनूय कुशींतल्यान x वजा करचें.
x^{2}-x-2=0
दोनूय कुशींतल्यान 2 वजा करचें.
a+b=-1 ab=-2
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}-x-2 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
a=-2 b=1
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. फकत तशें प्रणाली उत्तर आसा.
\left(x-2\right)\left(x+1\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=2 x=-1
गणीताचें उत्तर सोदूंक, सोडोवचें x-2=0 आनी x+1=0.
x^{2}-x=2
दोनूय कुशींतल्यान x वजा करचें.
x^{2}-x-2=0
दोनूय कुशींतल्यान 2 वजा करचें.
a+b=-1 ab=1\left(-2\right)=-2
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx-2 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
a=-2 b=1
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. फकत तशें प्रणाली उत्तर आसा.
\left(x^{2}-2x\right)+\left(x-2\right)
x^{2}-x-2 हें \left(x^{2}-2x\right)+\left(x-2\right) बरोवचें.
x\left(x-2\right)+x-2
फॅक्टर आवट x त x^{2}-2x.
\left(x-2\right)\left(x+1\right)
फॅक्टर आवट सामान्य शब्द x-2 वितरीत गूणधर्म वापरून.
x=2 x=-1
गणीताचें उत्तर सोदूंक, सोडोवचें x-2=0 आनी x+1=0.
x^{2}-x=2
दोनूय कुशींतल्यान x वजा करचें.
x^{2}-x-2=0
दोनूय कुशींतल्यान 2 वजा करचें.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर -1 आनी c खातीर -2 बदली घेवचे.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
-2क -4 फावटी गुणचें.
x=\frac{-\left(-1\right)±\sqrt{9}}{2}
8 कडेन 1 ची बेरीज करची.
x=\frac{-\left(-1\right)±3}{2}
9 चें वर्गमूळ घेवचें.
x=\frac{1±3}{2}
-1 च्या विरुध्दार्थी अंक 1 आसा.
x=\frac{4}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{1±3}{2} सोडोवचें. 3 कडेन 1 ची बेरीज करची.
x=2
2 न4 क भाग लावचो.
x=-\frac{2}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{1±3}{2} सोडोवचें. 1 तल्यान 3 वजा करची.
x=-1
2 न-2 क भाग लावचो.
x=2 x=-1
समिकरण आतां सुटावें जालें.
x^{2}-x=2
दोनूय कुशींतल्यान x वजा करचें.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -1 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{1}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{1}{2} क वर्गमूळ लावचें.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
\frac{1}{4} कडेन 2 ची बेरीज करची.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
गुणकपद x^{2}-x+\frac{1}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
सोंपें करचें.
x=2 x=-1
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{2} ची बेरीज करची.