मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

a+b=1 ab=-650
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}+x-650 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -650.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
दरेक जोडयेखातीर गणीत मेजचें.
a=-25 b=26
जोडयेचें उत्तर जें दिता गणीत 1.
\left(x-25\right)\left(x+26\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=25 x=-26
गणीताचें उत्तर सोदूंक, सोडोवचें x-25=0 आनी x+26=0.
a+b=1 ab=1\left(-650\right)=-650
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx-650 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -650.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
दरेक जोडयेखातीर गणीत मेजचें.
a=-25 b=26
जोडयेचें उत्तर जें दिता गणीत 1.
\left(x^{2}-25x\right)+\left(26x-650\right)
x^{2}+x-650 हें \left(x^{2}-25x\right)+\left(26x-650\right) बरोवचें.
x\left(x-25\right)+26\left(x-25\right)
पयल्यात xफॅक्टर आवट आनी 26 दुस-या गटात.
\left(x-25\right)\left(x+26\right)
फॅक्टर आवट सामान्य शब्द x-25 वितरीत गूणधर्म वापरून.
x=25 x=-26
गणीताचें उत्तर सोदूंक, सोडोवचें x-25=0 आनी x+26=0.
x^{2}+x-650=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-1±\sqrt{1^{2}-4\left(-650\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर 1 आनी c खातीर -650 बदली घेवचे.
x=\frac{-1±\sqrt{1-4\left(-650\right)}}{2}
1 वर्गमूळ.
x=\frac{-1±\sqrt{1+2600}}{2}
-650क -4 फावटी गुणचें.
x=\frac{-1±\sqrt{2601}}{2}
2600 कडेन 1 ची बेरीज करची.
x=\frac{-1±51}{2}
2601 चें वर्गमूळ घेवचें.
x=\frac{50}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-1±51}{2} सोडोवचें. 51 कडेन -1 ची बेरीज करची.
x=25
2 न50 क भाग लावचो.
x=-\frac{52}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-1±51}{2} सोडोवचें. -1 तल्यान 51 वजा करची.
x=-26
2 न-52 क भाग लावचो.
x=25 x=-26
समिकरण आतां सुटावें जालें.
x^{2}+x-650=0
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
x^{2}+x-650-\left(-650\right)=-\left(-650\right)
समिकरणाच्या दोनूय कुशींतल्यान 650 ची बेरीज करची.
x^{2}+x=-\left(-650\right)
तातूंतल्यानूच -650 वजा केल्यार 0 उरता.
x^{2}+x=650
0 तल्यान -650 वजा करची.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=650+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो 1 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी \frac{1}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}+x+\frac{1}{4}=650+\frac{1}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन \frac{1}{2} क वर्गमूळ लावचें.
x^{2}+x+\frac{1}{4}=\frac{2601}{4}
\frac{1}{4} कडेन 650 ची बेरीज करची.
\left(x+\frac{1}{2}\right)^{2}=\frac{2601}{4}
गुणकपद x^{2}+x+\frac{1}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{2601}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x+\frac{1}{2}=\frac{51}{2} x+\frac{1}{2}=-\frac{51}{2}
सोंपें करचें.
x=25 x=-26
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{2} वजा करचें.