मुखेल आशय वगडाय
t खातीर सोडोवचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

t^{2}-31+t=0
-31 मेळोवंक 11 आनी 42 वजा करचे.
t^{2}+t-31=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
t=\frac{-1±\sqrt{1^{2}-4\left(-31\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर 1 आनी c खातीर -31 बदली घेवचे.
t=\frac{-1±\sqrt{1-4\left(-31\right)}}{2}
1 वर्गमूळ.
t=\frac{-1±\sqrt{1+124}}{2}
-31क -4 फावटी गुणचें.
t=\frac{-1±\sqrt{125}}{2}
124 कडेन 1 ची बेरीज करची.
t=\frac{-1±5\sqrt{5}}{2}
125 चें वर्गमूळ घेवचें.
t=\frac{5\sqrt{5}-1}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण t=\frac{-1±5\sqrt{5}}{2} सोडोवचें. 5\sqrt{5} कडेन -1 ची बेरीज करची.
t=\frac{-5\sqrt{5}-1}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण t=\frac{-1±5\sqrt{5}}{2} सोडोवचें. -1 तल्यान 5\sqrt{5} वजा करची.
t=\frac{5\sqrt{5}-1}{2} t=\frac{-5\sqrt{5}-1}{2}
समिकरण आतां सुटावें जालें.
t^{2}-31+t=0
-31 मेळोवंक 11 आनी 42 वजा करचे.
t^{2}+t=31
दोनूय वटांनी 31 जोडचे. किदेंय अदीक शुन्य तें दितां.
t^{2}+t+\left(\frac{1}{2}\right)^{2}=31+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो 1 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी \frac{1}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
t^{2}+t+\frac{1}{4}=31+\frac{1}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन \frac{1}{2} क वर्गमूळ लावचें.
t^{2}+t+\frac{1}{4}=\frac{125}{4}
\frac{1}{4} कडेन 31 ची बेरीज करची.
\left(t+\frac{1}{2}\right)^{2}=\frac{125}{4}
गुणकपद t^{2}+t+\frac{1}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(t+\frac{1}{2}\right)^{2}}=\sqrt{\frac{125}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
t+\frac{1}{2}=\frac{5\sqrt{5}}{2} t+\frac{1}{2}=-\frac{5\sqrt{5}}{2}
सोंपें करचें.
t=\frac{5\sqrt{5}-1}{2} t=\frac{-5\sqrt{5}-1}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{2} वजा करचें.