मूल्यांकन करचें
\frac{\sqrt{595}}{14}\approx 1.742330131
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\sqrt{\frac{\left(0-0\times 500\right)^{2}+\left(0\times 747-0\times 440\right)^{2}+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{\left(0-0\right)^{2}+\left(0\times 747-0\times 440\right)^{2}+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 500 गुणचें.
\sqrt{\frac{0^{2}+\left(0\times 747-0\times 440\right)^{2}+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
तातूंतल्यानूच 0 वजा केल्यार 0 उरता.
\sqrt{\frac{0+\left(0\times 747-0\times 440\right)^{2}+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sqrt{\frac{0+\left(0-0\times 440\right)^{2}+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{0+\left(0-0\right)^{2}+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 440 गुणचें.
\sqrt{\frac{0+0^{2}+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
तातूंतल्यानूच 0 वजा केल्यार 0 उरता.
\sqrt{\frac{0+0+\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sqrt{\frac{\left(0\times 747-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 0 ची बेरीज करची.
\sqrt{\frac{\left(0-0\times 460\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{\left(0-0\right)^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 460 गुणचें.
\sqrt{\frac{0^{2}+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
तातूंतल्यानूच 0 वजा केल्यार 0 उरता.
\sqrt{\frac{0+\left(0\times 747-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sqrt{\frac{0+\left(0-0\times 640\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{0+\left(0-0\right)^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 640 गुणचें.
\sqrt{\frac{0+0^{2}+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
तातूंतल्यानूच 0 वजा केल्यार 0 उरता.
\sqrt{\frac{0+0+\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sqrt{\frac{\left(0\times 747-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 0 ची बेरीज करची.
\sqrt{\frac{\left(0-0\times 800\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{\left(0-0\right)^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 800 गुणचें.
\sqrt{\frac{0^{2}+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
तातूंतल्यानूच 0 वजा केल्यार 0 उरता.
\sqrt{\frac{0+\left(0\times 747-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sqrt{\frac{0+\left(0-0\times 850\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{0+\left(0-0\right)^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 850 गुणचें.
\sqrt{\frac{0+0^{2}+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
तातूंतल्यानूच 0 वजा केल्यार 0 उरता.
\sqrt{\frac{0+0+\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sqrt{\frac{\left(0\times 747-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 0 ची बेरीज करची.
\sqrt{\frac{\left(0-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{\left(-1\right)^{2}+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
-1 मेळोवंक 0 आनी 1 वजा करचे.
\sqrt{\frac{1+\left(0\times 747-13\right)^{2}}{8\left(8-1\right)}}
1 मेळोवंक 2 चो -1 पॉवर मेजचो.
\sqrt{\frac{1+\left(0-13\right)^{2}}{8\left(8-1\right)}}
0 मेळोवंक 0 आनी 747 गुणचें.
\sqrt{\frac{1+\left(-13\right)^{2}}{8\left(8-1\right)}}
-13 मेळोवंक 0 आनी 13 वजा करचे.
\sqrt{\frac{1+169}{8\left(8-1\right)}}
169 मेळोवंक 2 चो -13 पॉवर मेजचो.
\sqrt{\frac{170}{8\left(8-1\right)}}
170 मेळोवंक 1 आनी 169 ची बेरीज करची.
\sqrt{\frac{170}{8\times 7}}
7 मेळोवंक 8 आनी 1 वजा करचे.
\sqrt{\frac{170}{56}}
56 मेळोवंक 8 आनी 7 गुणचें.
\sqrt{\frac{85}{28}}
2 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{170}{56} उणो करचो.
\frac{\sqrt{85}}{\sqrt{28}}
\frac{\sqrt{85}}{\sqrt{28}} च्या वर्ग मूळाचो भागाकार म्हूण \sqrt{\frac{85}{28}} च्या वर्गमूळाचो भागाकार परत बरोवचो.
\frac{\sqrt{85}}{2\sqrt{7}}
28=2^{2}\times 7 गुणकपद काडचें. \sqrt{2^{2}}\sqrt{7} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{2^{2}\times 7} च्या वर्गमूळाचो गुणाकार परत बरोवचो. 2^{2} चें वर्गमूळ घेवचें.
\frac{\sqrt{85}\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
न्युमरेटर आनी डिनोमिनेटर \sqrt{7} न गुणून \frac{\sqrt{85}}{2\sqrt{7}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{\sqrt{85}\sqrt{7}}{2\times 7}
\sqrt{7} चो वर्ग 7 आसा.
\frac{\sqrt{595}}{2\times 7}
\sqrt{85} आनी \sqrt{7} गुणूंक, वर्गमुळाच्या खाला संख्या गुणची.
\frac{\sqrt{595}}{14}
14 मेळोवंक 2 आनी 7 गुणचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}