मूल्यांकन करचें
\frac{13\sqrt{2009635}}{15}\approx 1228.600495596
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\sqrt{\frac{\left(-3602\right)^{2}+\left(398-3998\right)^{2}+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3602 मेळोवंक 396 आनी 3998 वजा करचे.
\sqrt{\frac{12974404+\left(398-3998\right)^{2}+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12974404 मेळोवंक 2 चो -3602 पॉवर मेजचो.
\sqrt{\frac{12974404+\left(-3600\right)^{2}+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3600 मेळोवंक 398 आनी 3998 वजा करचे.
\sqrt{\frac{12974404+12960000+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12960000 मेळोवंक 2 चो -3600 पॉवर मेजचो.
\sqrt{\frac{25934404+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
25934404 मेळोवंक 12974404 आनी 12960000 ची बेरीज करची.
\sqrt{\frac{25934404+\left(-3603\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3603 मेळोवंक 395 आनी 3998 वजा करचे.
\sqrt{\frac{25934404+12981609+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12981609 मेळोवंक 2 चो -3603 पॉवर मेजचो.
\sqrt{\frac{38916013+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
38916013 मेळोवंक 25934404 आनी 12981609 ची बेरीज करची.
\sqrt{\frac{38916013+\left(-3595\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3595 मेळोवंक 403 आनी 3998 वजा करचे.
\sqrt{\frac{38916013+12924025+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12924025 मेळोवंक 2 चो -3595 पॉवर मेजचो.
\sqrt{\frac{51840038+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
51840038 मेळोवंक 38916013 आनी 12924025 ची बेरीज करची.
\sqrt{\frac{51840038+\left(-3599\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3599 मेळोवंक 399 आनी 3998 वजा करचे.
\sqrt{\frac{51840038+12952801+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12952801 मेळोवंक 2 चो -3599 पॉवर मेजचो.
\sqrt{\frac{64792839+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
64792839 मेळोवंक 51840038 आनी 12952801 ची बेरीज करची.
\sqrt{\frac{64792839+\left(-3595\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3595 मेळोवंक 403 आनी 3998 वजा करचे.
\sqrt{\frac{64792839+12924025+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12924025 मेळोवंक 2 चो -3595 पॉवर मेजचो.
\sqrt{\frac{77716864+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
77716864 मेळोवंक 64792839 आनी 12924025 ची बेरीज करची.
\sqrt{\frac{77716864+\left(-3596\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3596 मेळोवंक 402 आनी 3998 वजा करचे.
\sqrt{\frac{77716864+12931216+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12931216 मेळोवंक 2 चो -3596 पॉवर मेजचो.
\sqrt{\frac{90648080+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
90648080 मेळोवंक 77716864 आनी 12931216 ची बेरीज करची.
\sqrt{\frac{90648080+\left(-3599\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3599 मेळोवंक 399 आनी 3998 वजा करचे.
\sqrt{\frac{90648080+12952801+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
12952801 मेळोवंक 2 चो -3599 पॉवर मेजचो.
\sqrt{\frac{103600881+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
103600881 मेळोवंक 90648080 आनी 12952801 ची बेरीज करची.
\sqrt{\frac{103600881+\left(-3594\right)^{2}+\left(399+3998\right)^{2}}{90}}
-3594 मेळोवंक 404 आनी 3998 वजा करचे.
\sqrt{\frac{103600881+12916836+\left(399+3998\right)^{2}}{90}}
12916836 मेळोवंक 2 चो -3594 पॉवर मेजचो.
\sqrt{\frac{116517717+\left(399+3998\right)^{2}}{90}}
116517717 मेळोवंक 103600881 आनी 12916836 ची बेरीज करची.
\sqrt{\frac{116517717+4397^{2}}{90}}
4397 मेळोवंक 399 आनी 3998 ची बेरीज करची.
\sqrt{\frac{116517717+19333609}{90}}
19333609 मेळोवंक 2 चो 4397 पॉवर मेजचो.
\sqrt{\frac{135851326}{90}}
135851326 मेळोवंक 116517717 आनी 19333609 ची बेरीज करची.
\sqrt{\frac{67925663}{45}}
2 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{135851326}{90} उणो करचो.
\frac{\sqrt{67925663}}{\sqrt{45}}
\frac{\sqrt{67925663}}{\sqrt{45}} च्या वर्ग मूळाचो भागाकार म्हूण \sqrt{\frac{67925663}{45}} च्या वर्गमूळाचो भागाकार परत बरोवचो.
\frac{13\sqrt{401927}}{\sqrt{45}}
67925663=13^{2}\times 401927 गुणकपद काडचें. \sqrt{13^{2}}\sqrt{401927} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{13^{2}\times 401927} च्या वर्गमूळाचो गुणाकार परत बरोवचो. 13^{2} चें वर्गमूळ घेवचें.
\frac{13\sqrt{401927}}{3\sqrt{5}}
45=3^{2}\times 5 गुणकपद काडचें. \sqrt{3^{2}}\sqrt{5} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{3^{2}\times 5} च्या वर्गमूळाचो गुणाकार परत बरोवचो. 3^{2} चें वर्गमूळ घेवचें.
\frac{13\sqrt{401927}\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}
न्युमरेटर आनी डिनोमिनेटर \sqrt{5} न गुणून \frac{13\sqrt{401927}}{3\sqrt{5}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{13\sqrt{401927}\sqrt{5}}{3\times 5}
\sqrt{5} चो वर्ग 5 आसा.
\frac{13\sqrt{2009635}}{3\times 5}
\sqrt{401927} आनी \sqrt{5} गुणूंक, वर्गमुळाच्या खाला संख्या गुणची.
\frac{13\sqrt{2009635}}{15}
15 मेळोवंक 3 आनी 5 गुणचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}