मूल्यांकन करचें
\frac{11}{4}=2.75
गुणकपद
\frac{11}{2 ^ {2}} = 2\frac{3}{4} = 2.75
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\sqrt{\frac{\left(\frac{11}{4}\times \frac{8}{11}\right)^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
समान बेझीच्या पॉवरांक भाग लावंक, गणक निदर्शकांतल्यान भाजक निदर्शक वजा करचो. 1 मेळोवंक 2 तल्यान 1 वजा करचो.
\sqrt{\frac{2^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
2 मेळोवंक \frac{11}{4} आनी \frac{8}{11} गुणचें.
\sqrt{\frac{4}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
\sqrt{\frac{4}{\left(\frac{\frac{5}{12}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{5}{12} मेळोवंक \frac{23}{12} आनी \frac{3}{2} वजा करचे.
\sqrt{\frac{4}{\left(\frac{5}{12}\times \frac{4}{5}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{5}{4} च्या पुरकाक \frac{5}{12} गुणून \frac{5}{4} न \frac{5}{12} क भाग लावचो.
\sqrt{\frac{4}{\left(\frac{1}{3}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{1}{3} मेळोवंक \frac{5}{12} आनी \frac{4}{5} गुणचें.
\sqrt{\frac{4}{\frac{1}{9}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{1}{9} मेळोवंक 2 चो \frac{1}{3} पॉवर मेजचो.
\sqrt{4\times 9}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{1}{9} च्या पुरकाक 4 गुणून \frac{1}{9} न 4 क भाग लावचो.
\sqrt{36}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
36 मेळोवंक 4 आनी 9 गुणचें.
6-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
36 चें वर्गमूळ मेजचें आनी 6 मेळोवचें.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{1}{2} मेळोवंक 1 चो \frac{1}{2} पॉवर मेजचो.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\times \frac{13}{12}}{\frac{8}{3}}}
\frac{13}{12} मेळोवंक \frac{5}{4} आनी \frac{1}{6} वजा करचे.
6-\sqrt{10+\frac{\frac{1}{2}+1}{\frac{8}{3}}}
1 मेळोवंक \frac{12}{13} आनी \frac{13}{12} गुणचें.
6-\sqrt{10+\frac{\frac{3}{2}}{\frac{8}{3}}}
\frac{3}{2} मेळोवंक \frac{1}{2} आनी 1 ची बेरीज करची.
6-\sqrt{10+\frac{3}{2}\times \frac{3}{8}}
\frac{8}{3} च्या पुरकाक \frac{3}{2} गुणून \frac{8}{3} न \frac{3}{2} क भाग लावचो.
6-\sqrt{10+\frac{9}{16}}
\frac{9}{16} मेळोवंक \frac{3}{2} आनी \frac{3}{8} गुणचें.
6-\sqrt{\frac{169}{16}}
\frac{169}{16} मेळोवंक 10 आनी \frac{9}{16} ची बेरीज करची.
6-\frac{13}{4}
\frac{\sqrt{169}}{\sqrt{16}} च्या वर्ग मूळाचो भागाकार म्हूण \frac{169}{16} च्या वर्गमूळाचो भागाकार परत बरोवचो. न्युमरेटर आनी डिनोमिनेटर अशे दोगांचेय वर्ग मूळ घेवचे.
\frac{11}{4}
\frac{11}{4} मेळोवंक 6 आनी \frac{13}{4} वजा करचे.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}