मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\left(2-\frac{1}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{9}{20} मेळोवंक \frac{3}{2} आनी \frac{3}{10} गुणचें.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \left(\frac{5}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{5}{3} मेळोवंक 2 आनी \frac{1}{3} वजा करचे.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \frac{25}{9}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{25}{9} मेळोवंक 2 चो \frac{5}{3} पॉवर मेजचो.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{5}{3}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{5}{3} मेळोवंक \frac{3}{5} आनी \frac{25}{9} गुणचें.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{2}{15}\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{2}{15} मेळोवंक \frac{9}{5} आनी \frac{5}{3} वजा करचे.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{1}{5}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{1}{5} मेळोवंक \frac{2}{15} आनी \frac{3}{2} गुणचें.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{13}{20} मेळोवंक \frac{9}{20} आनी \frac{1}{5} ची बेरीज करची.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{13}{5}}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{13}{5} मेळोवंक \frac{3}{5} आनी 2 ची बेरीज करची.
\sqrt{\frac{\frac{13}{20}\times \frac{5}{13}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{13}{5} च्या पुरकाक \frac{13}{20} गुणून \frac{13}{5} न \frac{13}{20} क भाग लावचो.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
\frac{1}{4} मेळोवंक \frac{13}{20} आनी \frac{5}{13} गुणचें.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\times \frac{13}{4}\right)}}
\frac{13}{4} मेळोवंक \frac{1}{4} आनी 3 ची बेरीज करची.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{1}{2}\right)}}
\frac{1}{2} मेळोवंक \frac{2}{13} आनी \frac{13}{4} गुणचें.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\times \frac{2}{3}}}
\frac{2}{3} मेळोवंक \frac{1}{6} आनी \frac{1}{2} ची बेरीज करची.
\sqrt{\frac{\frac{1}{4}}{\frac{4}{9}}}
\frac{4}{9} मेळोवंक \frac{2}{3} आनी \frac{2}{3} गुणचें.
\sqrt{\frac{1}{4}\times \frac{9}{4}}
\frac{4}{9} च्या पुरकाक \frac{1}{4} गुणून \frac{4}{9} न \frac{1}{4} क भाग लावचो.
\sqrt{\frac{9}{16}}
\frac{9}{16} मेळोवंक \frac{1}{4} आनी \frac{9}{4} गुणचें.
\frac{3}{4}
\frac{\sqrt{9}}{\sqrt{16}} च्या वर्ग मूळाचो भागाकार म्हूण \frac{9}{16} च्या वर्गमूळाचो भागाकार परत बरोवचो. न्युमरेटर आनी डिनोमिनेटर अशे दोगांचेय वर्ग मूळ घेवचे.