मूल्यांकन करचें
2
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\left(\frac{1}{2}\right)^{2}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
त्रिकोणमिती मोलांच्या तकट्यातल्यान \sin(30) चे मोल मेळोवचें.
\frac{1}{4}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{1}{4} मेळोवंक 2 चो \frac{1}{2} पॉवर मेजचो.
\frac{1}{4}\times \left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
त्रिकोणमिती मोलांच्या तकट्यातल्यान \cos(45) चे मोल मेळोवचें.
\frac{1}{4}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{\sqrt{2}}{2} पॉवर दिवंक, न्युमरेटर आनी डिनोमिनेटर दोनूय पॉवर मेरेन वाडोवचे आनी मागीर भाग लावचो.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
न्युमरेटर वेळा न्युमरेटराक आनी डिनोमिनेटर वेळा डिनोमिनेटराक गुणून \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} वेळा \frac{1}{4} गुणचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \left(\frac{\sqrt{3}}{3}\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
त्रिकोणमिती मोलांच्या तकट्यातल्यान \tan(30) चे मोल मेळोवचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{\sqrt{3}}{3} पॉवर दिवंक, न्युमरेटर आनी डिनोमिनेटर दोनूय पॉवर मेरेन वाडोवचे आनी मागीर भाग लावचो.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
एकोडो अपूर्णांक म्हूण 4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} स्पश्ट करचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
त्रिकोणमिती मोलांच्या तकट्यातल्यान \sin(90) चे मोल मेळोवचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
1 मेळोवंक 2 चो 1 पॉवर मेजचो.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{1}{2} मेळोवंक \frac{1}{2} आनी 1 गुणचें.
\frac{9\left(\sqrt{2}\right)^{2}}{144}+\frac{16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. 4\times 2^{2} आनी 3^{2} चो किमान सामान्य गुणाकार आसा 144. \frac{9}{9}क \frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}} फावटी गुणचें. \frac{16}{16}क \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} फावटी गुणचें.
\frac{9\left(\sqrt{2}\right)^{2}+16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{9\left(\sqrt{2}\right)^{2}}{144} आनी \frac{16\times 4\left(\sqrt{3}\right)^{2}}{144} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{\left(\sqrt{2}\right)^{2}}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{8}{16}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. 4\times 2^{2} आनी 2 चो किमान सामान्य गुणाकार आसा 16. \frac{8}{8}क \frac{1}{2} फावटी गुणचें.
\frac{\left(\sqrt{2}\right)^{2}+8}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{\left(\sqrt{2}\right)^{2}}{16} आनी \frac{8}{16} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18}+\frac{9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. 3^{2} आनी 2 चो किमान सामान्य गुणाकार आसा 18. \frac{2}{2}क \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} फावटी गुणचें. \frac{9}{9}क \frac{1}{2} फावटी गुणचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18} आनी \frac{9}{18} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
त्रिकोणमिती मोलांच्या तकट्यातल्यान \cos(90) चे मोल मेळोवचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0+\frac{1}{24}\left(\cos(0)\right)^{2}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\left(\cos(0)\right)^{2}
0 मेळोवंक 2 आनी 0 गुणचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1^{2}
त्रिकोणमिती मोलांच्या तकट्यातल्यान \cos(0) चे मोल मेळोवचें.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1
1 मेळोवंक 2 चो 1 पॉवर मेजचो.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
\frac{1}{24} मेळोवंक \frac{1}{24} आनी 1 गुणचें.
\frac{2}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
\sqrt{2} चो वर्ग 2 आसा.
\frac{2}{4\times 4}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
\frac{2}{16}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
16 मेळोवंक 4 आनी 4 गुणचें.
\frac{1}{8}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
2 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{2}{16} उणो करचो.
\frac{1}{8}+\frac{8\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
8 मेळोवंक 2 आनी 4 गुणचें.
\frac{1}{8}+\frac{8\times 3+9}{18}-0+\frac{1}{24}
\sqrt{3} चो वर्ग 3 आसा.
\frac{1}{8}+\frac{24+9}{18}-0+\frac{1}{24}
24 मेळोवंक 8 आनी 3 गुणचें.
\frac{1}{8}+\frac{33}{18}-0+\frac{1}{24}
33 मेळोवंक 24 आनी 9 ची बेरीज करची.
\frac{1}{8}+\frac{11}{6}-0+\frac{1}{24}
3 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{33}{18} उणो करचो.
\frac{47}{24}-0+\frac{1}{24}
\frac{47}{24} मेळोवंक \frac{1}{8} आनी \frac{11}{6} ची बेरीज करची.
\frac{47}{24}+\frac{1}{24}
\frac{47}{24} मेळोवंक \frac{47}{24} आनी 0 वजा करचे.
2
2 मेळोवंक \frac{47}{24} आनी \frac{1}{24} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}