मुखेल आशय वगडाय
σ_x खातीर सोडोवचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
-2 मेळोवंक -2 आनी 0 वजा करचे.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
4 मेळोवंक 2 चो -2 पॉवर मेजचो.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} मेळोवंक 4 आनी \frac{4}{9} गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 मेळोवंक 0 आनी 0 गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 9\right)^{2}\times \frac{2}{9}
3 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{3}{9} उणो करचो.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 मेळोवंक 0 आनी \frac{1}{3} गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} मेळोवंक \frac{16}{9} आनी 0 ची बेरीज करची.
\sigma _{x}^{2}=\frac{16}{9}+9^{2}\times \frac{2}{9}
9 मेळोवंक 1 आनी 9 गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+81\times \frac{2}{9}
81 मेळोवंक 2 चो 9 पॉवर मेजचो.
\sigma _{x}^{2}=\frac{16}{9}+18
18 मेळोवंक 81 आनी \frac{2}{9} गुणचें.
\sigma _{x}^{2}=\frac{178}{9}
\frac{178}{9} मेळोवंक \frac{16}{9} आनी 18 ची बेरीज करची.
\sigma _{x}=\frac{\sqrt{178}}{3} \sigma _{x}=-\frac{\sqrt{178}}{3}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
-2 मेळोवंक -2 आनी 0 वजा करचे.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
4 मेळोवंक 2 चो -2 पॉवर मेजचो.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} मेळोवंक 4 आनी \frac{4}{9} गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 मेळोवंक 0 आनी 0 गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 मेळोवंक 2 चो 0 पॉवर मेजचो.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 9\right)^{2}\times \frac{2}{9}
3 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{3}{9} उणो करचो.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 मेळोवंक 0 आनी \frac{1}{3} गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} मेळोवंक \frac{16}{9} आनी 0 ची बेरीज करची.
\sigma _{x}^{2}=\frac{16}{9}+9^{2}\times \frac{2}{9}
9 मेळोवंक 1 आनी 9 गुणचें.
\sigma _{x}^{2}=\frac{16}{9}+81\times \frac{2}{9}
81 मेळोवंक 2 चो 9 पॉवर मेजचो.
\sigma _{x}^{2}=\frac{16}{9}+18
18 मेळोवंक 81 आनी \frac{2}{9} गुणचें.
\sigma _{x}^{2}=\frac{178}{9}
\frac{178}{9} मेळोवंक \frac{16}{9} आनी 18 ची बेरीज करची.
\sigma _{x}^{2}-\frac{178}{9}=0
दोनूय कुशींतल्यान \frac{178}{9} वजा करचें.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-\frac{178}{9}\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर 0 आनी c खातीर -\frac{178}{9} बदली घेवचे.
\sigma _{x}=\frac{0±\sqrt{-4\left(-\frac{178}{9}\right)}}{2}
0 वर्गमूळ.
\sigma _{x}=\frac{0±\sqrt{\frac{712}{9}}}{2}
-\frac{178}{9}क -4 फावटी गुणचें.
\sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2}
\frac{712}{9} चें वर्गमूळ घेवचें.
\sigma _{x}=\frac{\sqrt{178}}{3}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण \sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2} सोडोवचें.
\sigma _{x}=-\frac{\sqrt{178}}{3}
जेन्ना ± वजा आस्ता तेन्ना समिकरण \sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2} सोडोवचें.
\sigma _{x}=\frac{\sqrt{178}}{3} \sigma _{x}=-\frac{\sqrt{178}}{3}
समिकरण आतां सुटावें जालें.