मुखेल आशय वगडाय
N खातीर सोडोवचें
Tick mark Image
C खातीर सोडोवचें
Tick mark Image

वांटचें

ϕ=55512000NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
55512000 मेळोवंक 4500 आनी 12336 गुणचें.
ϕ=55512000NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{1}{10000} मेळोवंक -4 चो 10 पॉवर मेजचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{27756}{5} मेळोवंक 55512000 आनी \frac{1}{10000} गुणचें.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{1}{100} मेळोवंक -2 चो 10 पॉवर मेजचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{37}{20} मेळोवंक 185 आनी \frac{1}{100} गुणचें.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times 10^{-2}m}))
61 मेळोवंक 122 क 2 न भाग लावचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times \frac{1}{100}m}))
\frac{1}{100} मेळोवंक -2 चो 10 पॉवर मेजचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{61}{100}m}))
\frac{61}{100} मेळोवंक 61 आनी \frac{1}{100} गुणचें.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}}{\frac{61}{100}}))
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय m रद्द करचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{37}{20}\times \frac{100}{61}))
\frac{61}{100} च्या पुरकाक \frac{37}{20} गुणून \frac{61}{100} न \frac{37}{20} क भाग लावचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))
\frac{185}{61} मेळोवंक \frac{37}{20} आनी \frac{100}{61} गुणचें.
\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))=ϕ
कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N=ϕ
समिकरण प्रमाणिक स्वरूपांत आसा.
\frac{\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
दोनुय कुशींक \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) न भाग लावचो.
N=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
\frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) वरवीं भागाकार केल्यार \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) वरवीं केल्लो गुणाकार काडटा.
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
\frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) नϕ क भाग लावचो.