N खातीर सोडोवचें
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
C\neq 0\text{ and }m\neq 0
C खातीर सोडोवचें
\left\{\begin{matrix}C=\frac{846558\sqrt{37946}Nm^{2}}{94865ϕ}\text{, }&m\neq 0\text{ and }N\neq 0\text{ and }ϕ\neq 0\\C\neq 0\text{, }&m\neq 0\text{ and }ϕ=0\text{ and }N=0\end{matrix}\right.
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
ϕ=55512000NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
55512000 मेळोवंक 4500 आनी 12336 गुणचें.
ϕ=55512000NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{1}{10000} मेळोवंक -4 चो 10 पॉवर मेजचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{27756}{5} मेळोवंक 55512000 आनी \frac{1}{10000} गुणचें.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{1}{100} मेळोवंक -2 चो 10 पॉवर मेजचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{37}{20} मेळोवंक 185 आनी \frac{1}{100} गुणचें.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times 10^{-2}m}))
61 मेळोवंक 122 क 2 न भाग लावचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times \frac{1}{100}m}))
\frac{1}{100} मेळोवंक -2 चो 10 पॉवर मेजचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{61}{100}m}))
\frac{61}{100} मेळोवंक 61 आनी \frac{1}{100} गुणचें.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}}{\frac{61}{100}}))
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय m रद्द करचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{37}{20}\times \frac{100}{61}))
\frac{61}{100} च्या पुरकाक \frac{37}{20} गुणून \frac{61}{100} न \frac{37}{20} क भाग लावचो.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))
\frac{185}{61} मेळोवंक \frac{37}{20} आनी \frac{100}{61} गुणचें.
\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))=ϕ
कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N=ϕ
समिकरण प्रमाणिक स्वरूपांत आसा.
\frac{\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
दोनुय कुशींक \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) न भाग लावचो.
N=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
\frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) वरवीं भागाकार केल्यार \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) वरवीं केल्लो गुणाकार काडटा.
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
\frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) नϕ क भाग लावचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}