a खातीर सोडोवचें (जटील सोल्यूशन)
\left\{\begin{matrix}a=-\frac{\sqrt[3]{3}\theta ^{-\frac{1}{3}}\sqrt[3]{-\tan(\theta )}}{n}\text{; }a=\frac{\sqrt[3]{3}e^{\frac{\pi i}{3}}\theta ^{-\frac{1}{3}}\sqrt[3]{-\tan(\theta )}}{n}\text{; }a=-\frac{\sqrt[3]{3}ie^{\frac{\pi i}{6}}\theta ^{-\frac{1}{3}}\sqrt[3]{-\tan(\theta )}}{n}\text{, }&n\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\a\in \mathrm{C}\text{, }&\left(\theta =0\text{ or }n=0\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\end{matrix}\right.
n खातीर सोडोवचें (जटील सोल्यूशन)
\left\{\begin{matrix}n=-\frac{\sqrt[3]{3}\theta ^{-\frac{1}{3}}\sqrt[3]{-\tan(\theta )}}{a}\text{; }n=\frac{\sqrt[3]{3}e^{\frac{\pi i}{3}}\theta ^{-\frac{1}{3}}\sqrt[3]{-\tan(\theta )}}{a}\text{; }n=-\frac{\sqrt[3]{3}ie^{\frac{\pi i}{6}}\theta ^{-\frac{1}{3}}\sqrt[3]{-\tan(\theta )}}{a}\text{, }&a\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\n\in \mathrm{C}\text{, }&\left(\theta =0\text{ or }a=0\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\end{matrix}\right.
a खातीर सोडोवचें
\left\{\begin{matrix}a=\frac{\sqrt[3]{\frac{3\tan(\theta )}{\theta }}}{n}\text{, }&n\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\a\in \mathrm{R}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\left(n=0\text{ or }\theta =0\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\end{matrix}\right.
n खातीर सोडोवचें
\left\{\begin{matrix}n=\frac{\sqrt[3]{\frac{3\tan(\theta )}{\theta }}}{a}\text{, }&a\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\n\in \mathrm{R}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\left(a=0\text{ or }\theta =0\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\end{matrix}\right.
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}