मुखेल आशय वगडाय
a, b खातीर सोडोवचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

a+5b=80
पयलें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
a+5b=80,a+b=49
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
a+5b=80
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक a वेगळावन a खातीर तें सोडोवचें.
a=-5b+80
समिकरणाच्या दोनूय कुशींतल्यान 5b वजा करचें.
-5b+80+b=49
a+b=49 ह्या दुस-या समिकरणांत a खातीर -5b+80 बदलपी घेवचो.
-4b+80=49
b कडेन -5b ची बेरीज करची.
-4b=-31
समिकरणाच्या दोनूय कुशींतल्यान 80 वजा करचें.
b=\frac{31}{4}
दोनुय कुशींक -4 न भाग लावचो.
a=-5\times \frac{31}{4}+80
a=-5b+80 त b खातीर \frac{31}{4} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी a खातीर थेट सोडोवंक शकतात.
a=-\frac{155}{4}+80
\frac{31}{4}क -5 फावटी गुणचें.
a=\frac{165}{4}
-\frac{155}{4} कडेन 80 ची बेरीज करची.
a=\frac{165}{4},b=\frac{31}{4}
प्रणाली आतां सुटावी जाली.
a+5b=80
पयलें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
a+5b=80,a+b=49
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&5\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}80\\49\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}1&5\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}80\\49\end{matrix}\right)
\left(\begin{matrix}1&5\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}80\\49\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}80\\49\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-5}&-\frac{5}{1-5}\\-\frac{1}{1-5}&\frac{1}{1-5}\end{matrix}\right)\left(\begin{matrix}80\\49\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{5}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}80\\49\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 80+\frac{5}{4}\times 49\\\frac{1}{4}\times 80-\frac{1}{4}\times 49\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{165}{4}\\\frac{31}{4}\end{matrix}\right)
अंकगणीत करचें.
a=\frac{165}{4},b=\frac{31}{4}
मॅट्रिक्स मुलतत्वां a आनी b काडचीं.
a+5b=80
पयलें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
a+5b=80,a+b=49
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
a-a+5b-b=80-49
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून a+5b=80 तल्यान a+b=49 वजा करचो.
5b-b=80-49
-a कडेन a ची बेरीज करची. अटी a आनी -a रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
4b=80-49
-b कडेन 5b ची बेरीज करची.
4b=31
-49 कडेन 80 ची बेरीज करची.
b=\frac{31}{4}
दोनुय कुशींक 4 न भाग लावचो.
a+\frac{31}{4}=49
a+b=49 त b खातीर \frac{31}{4} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी a खातीर थेट सोडोवंक शकतात.
a=\frac{165}{4}
समिकरणाच्या दोनूय कुशींतल्यान \frac{31}{4} वजा करचें.
a=\frac{165}{4},b=\frac{31}{4}
प्रणाली आतां सुटावी जाली.