x, y खातीर सोडोवचें
x=3
y=3
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-x-y=-6,2x-3y=-3
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
-x-y=-6
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
-x=y-6
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
x=-\left(y-6\right)
दोनुय कुशींक -1 न भाग लावचो.
x=-y+6
y-6क -1 फावटी गुणचें.
2\left(-y+6\right)-3y=-3
2x-3y=-3 ह्या दुस-या समिकरणांत x खातीर -y+6 बदलपी घेवचो.
-2y+12-3y=-3
-y+6क 2 फावटी गुणचें.
-5y+12=-3
-3y कडेन -2y ची बेरीज करची.
-5y=-15
समिकरणाच्या दोनूय कुशींतल्यान 12 वजा करचें.
y=3
दोनुय कुशींक -5 न भाग लावचो.
x=-3+6
x=-y+6 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=3
-3 कडेन 6 ची बेरीज करची.
x=3,y=3
प्रणाली आतां सुटावी जाली.
-x-y=-6,2x-3y=-3
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-3\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-\left(-3\right)-\left(-2\right)}&-\frac{-1}{-\left(-3\right)-\left(-2\right)}\\-\frac{2}{-\left(-3\right)-\left(-2\right)}&-\frac{1}{-\left(-3\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\left(-6\right)+\frac{1}{5}\left(-3\right)\\-\frac{2}{5}\left(-6\right)-\frac{1}{5}\left(-3\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
अंकगणीत करचें.
x=3,y=3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
-x-y=-6,2x-3y=-3
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2\left(-1\right)x+2\left(-1\right)y=2\left(-6\right),-2x-\left(-3y\right)=-\left(-3\right)
-x आनी 2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -1 न गुणचें.
-2x-2y=-12,-2x+3y=3
सोंपें करचें.
-2x+2x-2y-3y=-12-3
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -2x-2y=-12 तल्यान -2x+3y=3 वजा करचो.
-2y-3y=-12-3
2x कडेन -2x ची बेरीज करची. अटी -2x आनी 2x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-5y=-12-3
-3y कडेन -2y ची बेरीज करची.
-5y=-15
-3 कडेन -12 ची बेरीज करची.
y=3
दोनुय कुशींक -5 न भाग लावचो.
2x-3\times 3=-3
2x-3y=-3 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
2x-9=-3
3क -3 फावटी गुणचें.
2x=6
समिकरणाच्या दोनूय कुशींतल्यान 9 ची बेरीज करची.
x=3
दोनुय कुशींक 2 न भाग लावचो.
x=3,y=3
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}