मुखेल आशय वगडाय
x_1, x_2, x_3 खातीर सोडोवचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

x_{1}=-x_{2}+3x_{3}+2x_{4}+2
x_{1} खातीर x_{1}+x_{2}-3x_{3}-2x_{4}=2 सोडोवचो.
-x_{2}+3x_{3}+2x_{4}+2+x_{3}-x_{4}=1 2\left(-x_{2}+3x_{3}+2x_{4}+2\right)+6x_{2}-13x_{3}-5x_{4}=6
दुस-या आनी तिस-या समिकरणांत x_{1} खातीर -x_{2}+3x_{3}+2x_{4}+2 बदलपी घेवचो.
x_{2}=4x_{3}+x_{4}+1 x_{3}=\frac{4}{7}x_{2}-\frac{1}{7}x_{4}-\frac{2}{7}
अनुक्रमान x_{2} आनी x_{3} खातीर हीं समिकरणां सोडोवचीं.
x_{3}=\frac{4}{7}\left(4x_{3}+x_{4}+1\right)-\frac{1}{7}x_{4}-\frac{2}{7}
x_{3}=\frac{4}{7}x_{2}-\frac{1}{7}x_{4}-\frac{2}{7} ह्या समिकरणांत x_{2} खातीर 4x_{3}+x_{4}+1 बदलपी घेवचो.
x_{3}=-\frac{2}{9}-\frac{1}{3}x_{4}
x_{3} खातीर x_{3}=\frac{4}{7}\left(4x_{3}+x_{4}+1\right)-\frac{1}{7}x_{4}-\frac{2}{7} सोडोवचो.
x_{2}=4\left(-\frac{2}{9}-\frac{1}{3}x_{4}\right)+x_{4}+1
x_{2}=4x_{3}+x_{4}+1 ह्या समिकरणांत x_{3} खातीर -\frac{2}{9}-\frac{1}{3}x_{4} बदलपी घेवचो.
x_{2}=\frac{1}{9}-\frac{1}{3}x_{4}
x_{2}=4\left(-\frac{2}{9}-\frac{1}{3}x_{4}\right)+x_{4}+1 तल्यान x_{2} मेजचो.
x_{1}=-\left(\frac{1}{9}-\frac{1}{3}x_{4}\right)+3\left(-\frac{2}{9}-\frac{1}{3}x_{4}\right)+2x_{4}+2
x_{2} आनी -\frac{2}{9}-\frac{1}{3}x_{4} ह्या समिकरणांत x_{3} खातीर \frac{1}{9}-\frac{1}{3}x_{4} बदलपी घेवचो x_{1}=-x_{2}+3x_{3}+2x_{4}+2.
x_{1}=\frac{11}{9}+\frac{4}{3}x_{4}
x_{1}=-\left(\frac{1}{9}-\frac{1}{3}x_{4}\right)+3\left(-\frac{2}{9}-\frac{1}{3}x_{4}\right)+2x_{4}+2 तल्यान x_{1} मेजचो.
x_{1}=\frac{11}{9}+\frac{4}{3}x_{4} x_{2}=\frac{1}{9}-\frac{1}{3}x_{4} x_{3}=-\frac{2}{9}-\frac{1}{3}x_{4}
प्रणाली आतां सुटावी जाली.