x, y, z खातीर सोडोवचें
x=-19
y=20
z=-6
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x=\frac{7}{17}y-\frac{7}{17}z-\frac{505}{17}
x खातीर -17x+7y-7z=505 सोडोवचो.
7\left(\frac{7}{17}y-\frac{7}{17}z-\frac{505}{17}\right)+4y+2z=-65 19\left(\frac{7}{17}y-\frac{7}{17}z-\frac{505}{17}\right)+2y+8z=-369
दुस-या आनी तिस-या समिकरणांत x खातीर \frac{7}{17}y-\frac{7}{17}z-\frac{505}{17} बदलपी घेवचो.
y=\frac{270}{13}+\frac{5}{39}z z=\frac{3322}{3}-\frac{167}{3}y
अनुक्रमान y आनी z खातीर हीं समिकरणां सोडोवचीं.
z=\frac{3322}{3}-\frac{167}{3}\left(\frac{270}{13}+\frac{5}{39}z\right)
z=\frac{3322}{3}-\frac{167}{3}y ह्या समिकरणांत y खातीर \frac{270}{13}+\frac{5}{39}z बदलपी घेवचो.
z=-6
z खातीर z=\frac{3322}{3}-\frac{167}{3}\left(\frac{270}{13}+\frac{5}{39}z\right) सोडोवचो.
y=\frac{270}{13}+\frac{5}{39}\left(-6\right)
y=\frac{270}{13}+\frac{5}{39}z ह्या समिकरणांत z खातीर -6 बदलपी घेवचो.
y=20
y=\frac{270}{13}+\frac{5}{39}\left(-6\right) तल्यान y मेजचो.
x=\frac{7}{17}\times 20-\frac{7}{17}\left(-6\right)-\frac{505}{17}
y आनी -6 ह्या समिकरणांत z खातीर 20 बदलपी घेवचो x=\frac{7}{17}y-\frac{7}{17}z-\frac{505}{17}.
x=-19
x=\frac{7}{17}\times 20-\frac{7}{17}\left(-6\right)-\frac{505}{17} तल्यान x मेजचो.
x=-19 y=20 z=-6
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}