मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3x+2y=0,x-5y=17
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+2y=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-2y
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
x=\frac{1}{3}\left(-2\right)y
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{2}{3}y
-2yक \frac{1}{3} फावटी गुणचें.
-\frac{2}{3}y-5y=17
x-5y=17 ह्या दुस-या समिकरणांत x खातीर -\frac{2y}{3} बदलपी घेवचो.
-\frac{17}{3}y=17
-5y कडेन -\frac{2y}{3} ची बेरीज करची.
y=-3
-\frac{17}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{2}{3}\left(-3\right)
x=-\frac{2}{3}y त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=2
-3क -\frac{2}{3} फावटी गुणचें.
x=2,y=-3
प्रणाली आतां सुटावी जाली.
3x+2y=0,x-5y=17
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\17\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\17\end{matrix}\right)
\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\17\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\17\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-2}&-\frac{2}{3\left(-5\right)-2}\\-\frac{1}{3\left(-5\right)-2}&\frac{3}{3\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}0\\17\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{2}{17}\\\frac{1}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}0\\17\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 17\\-\frac{3}{17}\times 17\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
अंकगणीत करचें.
x=2,y=-3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+2y=0,x-5y=17
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+2y=0,3x+3\left(-5\right)y=3\times 17
3x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
3x+2y=0,3x-15y=51
सोंपें करचें.
3x-3x+2y+15y=-51
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x+2y=0 तल्यान 3x-15y=51 वजा करचो.
2y+15y=-51
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
17y=-51
15y कडेन 2y ची बेरीज करची.
y=-3
दोनुय कुशींक 17 न भाग लावचो.
x-5\left(-3\right)=17
x-5y=17 त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x+15=17
-3क -5 फावटी गुणचें.
x=2
समिकरणाच्या दोनूय कुशींतल्यान 15 वजा करचें.
x=2,y=-3
प्रणाली आतां सुटावी जाली.