x, y खातीर सोडोवचें
x=-4
y=6
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
2x+3y=10,-3x+y=18
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+3y=10
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-3y+10
समिकरणाच्या दोनूय कुशींतल्यान 3y वजा करचें.
x=\frac{1}{2}\left(-3y+10\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-\frac{3}{2}y+5
-3y+10क \frac{1}{2} फावटी गुणचें.
-3\left(-\frac{3}{2}y+5\right)+y=18
-3x+y=18 ह्या दुस-या समिकरणांत x खातीर -\frac{3y}{2}+5 बदलपी घेवचो.
\frac{9}{2}y-15+y=18
-\frac{3y}{2}+5क -3 फावटी गुणचें.
\frac{11}{2}y-15=18
y कडेन \frac{9y}{2} ची बेरीज करची.
\frac{11}{2}y=33
समिकरणाच्या दोनूय कुशींतल्यान 15 ची बेरीज करची.
y=6
\frac{11}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{3}{2}\times 6+5
x=-\frac{3}{2}y+5 त y खातीर 6 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-9+5
6क -\frac{3}{2} फावटी गुणचें.
x=-4
-9 कडेन 5 ची बेरीज करची.
x=-4,y=6
प्रणाली आतां सुटावी जाली.
2x+3y=10,-3x+y=18
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&3\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\18\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}2&3\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}10\\18\end{matrix}\right)
\left(\begin{matrix}2&3\\-3&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}10\\18\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}10\\18\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-3\right)}&-\frac{3}{2-3\left(-3\right)}\\-\frac{-3}{2-3\left(-3\right)}&\frac{2}{2-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\18\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&-\frac{3}{11}\\\frac{3}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}10\\18\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 10-\frac{3}{11}\times 18\\\frac{3}{11}\times 10+\frac{2}{11}\times 18\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\6\end{matrix}\right)
अंकगणीत करचें.
x=-4,y=6
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x+3y=10,-3x+y=18
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-3\times 2x-3\times 3y=-3\times 10,2\left(-3\right)x+2y=2\times 18
2x आनी -3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
-6x-9y=-30,-6x+2y=36
सोंपें करचें.
-6x+6x-9y-2y=-30-36
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -6x-9y=-30 तल्यान -6x+2y=36 वजा करचो.
-9y-2y=-30-36
6x कडेन -6x ची बेरीज करची. अटी -6x आनी 6x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-11y=-30-36
-2y कडेन -9y ची बेरीज करची.
-11y=-66
-36 कडेन -30 ची बेरीज करची.
y=6
दोनुय कुशींक -11 न भाग लावचो.
-3x+6=18
-3x+y=18 त y खातीर 6 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-3x=12
समिकरणाच्या दोनूय कुशींतल्यान 6 वजा करचें.
x=-4
दोनुय कुशींक -3 न भाग लावचो.
x=-4,y=6
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}