x, y खातीर सोडोवचें
x=4
y=0
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-6x+21y=-24,6x-4y=24
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
-6x+21y=-24
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
-6x=-21y-24
समिकरणाच्या दोनूय कुशींतल्यान 21y वजा करचें.
x=-\frac{1}{6}\left(-21y-24\right)
दोनुय कुशींक -6 न भाग लावचो.
x=\frac{7}{2}y+4
-21y-24क -\frac{1}{6} फावटी गुणचें.
6\left(\frac{7}{2}y+4\right)-4y=24
6x-4y=24 ह्या दुस-या समिकरणांत x खातीर \frac{7y}{2}+4 बदलपी घेवचो.
21y+24-4y=24
\frac{7y}{2}+4क 6 फावटी गुणचें.
17y+24=24
-4y कडेन 21y ची बेरीज करची.
17y=0
समिकरणाच्या दोनूय कुशींतल्यान 24 वजा करचें.
y=0
दोनुय कुशींक 17 न भाग लावचो.
x=4
x=\frac{7}{2}y+4 त y खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=4,y=0
प्रणाली आतां सुटावी जाली.
-6x+21y=-24,6x-4y=24
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\24\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-6\left(-4\right)-21\times 6}&-\frac{21}{-6\left(-4\right)-21\times 6}\\-\frac{6}{-6\left(-4\right)-21\times 6}&-\frac{6}{-6\left(-4\right)-21\times 6}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{51}&\frac{7}{34}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{51}\left(-24\right)+\frac{7}{34}\times 24\\\frac{1}{17}\left(-24\right)+\frac{1}{17}\times 24\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
अंकगणीत करचें.
x=4,y=0
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
-6x+21y=-24,6x-4y=24
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
6\left(-6\right)x+6\times 21y=6\left(-24\right),-6\times 6x-6\left(-4\right)y=-6\times 24
-6x आनी 6x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 6 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -6 न गुणचें.
-36x+126y=-144,-36x+24y=-144
सोंपें करचें.
-36x+36x+126y-24y=-144+144
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -36x+126y=-144 तल्यान -36x+24y=-144 वजा करचो.
126y-24y=-144+144
36x कडेन -36x ची बेरीज करची. अटी -36x आनी 36x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
102y=-144+144
-24y कडेन 126y ची बेरीज करची.
102y=0
144 कडेन -144 ची बेरीज करची.
y=0
दोनुय कुशींक 102 न भाग लावचो.
6x=24
6x-4y=24 त y खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=4
दोनुय कुशींक 6 न भाग लावचो.
x=4,y=0
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}