मुखेल आशय वगडाय
y, x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

y-x=1
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-3x=2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 3x वजा करचें.
y-x=1,y-3x=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y-x=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=x+1
समिकरणाच्या दोनूय कुशींतल्यान x ची बेरीज करची.
x+1-3x=2
y-3x=2 ह्या दुस-या समिकरणांत y खातीर x+1 बदलपी घेवचो.
-2x+1=2
-3x कडेन x ची बेरीज करची.
-2x=1
समिकरणाच्या दोनूय कुशींतल्यान 1 वजा करचें.
x=-\frac{1}{2}
दोनुय कुशींक -2 न भाग लावचो.
y=-\frac{1}{2}+1
y=x+1 त x खातीर -\frac{1}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=\frac{1}{2}
-\frac{1}{2} कडेन 1 ची बेरीज करची.
y=\frac{1}{2},x=-\frac{1}{2}
प्रणाली आतां सुटावी जाली.
y-x=1
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-3x=2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 3x वजा करचें.
y-x=1,y-3x=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-1\right)}&-\frac{-1}{-3-\left(-1\right)}\\-\frac{1}{-3-\left(-1\right)}&\frac{1}{-3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}-\frac{1}{2}\times 2\\\frac{1}{2}-\frac{1}{2}\times 2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{1}{2}\end{matrix}\right)
अंकगणीत करचें.
y=\frac{1}{2},x=-\frac{1}{2}
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y-x=1
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-3x=2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 3x वजा करचें.
y-x=1,y-3x=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
y-y-x+3x=1-2
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून y-x=1 तल्यान y-3x=2 वजा करचो.
-x+3x=1-2
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
2x=1-2
3x कडेन -x ची बेरीज करची.
2x=-1
-2 कडेन 1 ची बेरीज करची.
x=-\frac{1}{2}
दोनुय कुशींक 2 न भाग लावचो.
y-3\left(-\frac{1}{2}\right)=2
y-3x=2 त x खातीर -\frac{1}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y+\frac{3}{2}=2
-\frac{1}{2}क -3 फावटी गुणचें.
y=\frac{1}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{3}{2} वजा करचें.
y=\frac{1}{2},x=-\frac{1}{2}
प्रणाली आतां सुटावी जाली.