मुखेल आशय वगडाय
y, x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

y-2x=-7
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
y+3x=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी 3x जोडचे.
y-2x=-7,y+3x=-2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y-2x=-7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=2x-7
समिकरणाच्या दोनूय कुशींतल्यान 2x ची बेरीज करची.
2x-7+3x=-2
y+3x=-2 ह्या दुस-या समिकरणांत y खातीर 2x-7 बदलपी घेवचो.
5x-7=-2
3x कडेन 2x ची बेरीज करची.
5x=5
समिकरणाच्या दोनूय कुशींतल्यान 7 ची बेरीज करची.
x=1
दोनुय कुशींक 5 न भाग लावचो.
y=2-7
y=2x-7 त x खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=-5
2 कडेन -7 ची बेरीज करची.
y=-5,x=1
प्रणाली आतां सुटावी जाली.
y-2x=-7
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
y+3x=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी 3x जोडचे.
y-2x=-7,y+3x=-2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-2\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-7\\-2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}1&-2\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}-7\\-2\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&3\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}-7\\-2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}-7\\-2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{1}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-7\\-2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-7\\-2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\left(-7\right)+\frac{2}{5}\left(-2\right)\\-\frac{1}{5}\left(-7\right)+\frac{1}{5}\left(-2\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
अंकगणीत करचें.
y=-5,x=1
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y-2x=-7
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
y+3x=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी 3x जोडचे.
y-2x=-7,y+3x=-2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
y-y-2x-3x=-7+2
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून y-2x=-7 तल्यान y+3x=-2 वजा करचो.
-2x-3x=-7+2
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-5x=-7+2
-3x कडेन -2x ची बेरीज करची.
-5x=-5
2 कडेन -7 ची बेरीज करची.
x=1
दोनुय कुशींक -5 न भाग लावचो.
y+3=-2
y+3x=-2 त x खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=-5
समिकरणाच्या दोनूय कुशींतल्यान 3 वजा करचें.
y=-5,x=1
प्रणाली आतां सुटावी जाली.