मुखेल आशय वगडाय
y, x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

y-2x=4
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
y-x=1
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-2x=4,y-x=1
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y-2x=4
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=2x+4
समिकरणाच्या दोनूय कुशींतल्यान 2x ची बेरीज करची.
2x+4-x=1
y-x=1 ह्या दुस-या समिकरणांत y खातीर 4+2x बदलपी घेवचो.
x+4=1
-x कडेन 2x ची बेरीज करची.
x=-3
समिकरणाच्या दोनूय कुशींतल्यान 4 वजा करचें.
y=2\left(-3\right)+4
y=2x+4 त x खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=-6+4
-3क 2 फावटी गुणचें.
y=-2
-6 कडेन 4 ची बेरीज करची.
y=-2,x=-3
प्रणाली आतां सुटावी जाली.
y-2x=4
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
y-x=1
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-2x=4,y-x=1
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-2}{-1-\left(-2\right)}\\-\frac{1}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4+2\\-4+1\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\-3\end{matrix}\right)
अंकगणीत करचें.
y=-2,x=-3
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y-2x=4
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
y-x=1
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-2x=4,y-x=1
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
y-y-2x+x=4-1
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून y-2x=4 तल्यान y-x=1 वजा करचो.
-2x+x=4-1
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-x=4-1
x कडेन -2x ची बेरीज करची.
-x=3
-1 कडेन 4 ची बेरीज करची.
x=-3
दोनुय कुशींक -1 न भाग लावचो.
y-\left(-3\right)=1
y-x=1 त x खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y+3=1
-3क -1 फावटी गुणचें.
y=-2
समिकरणाच्या दोनूय कुशींतल्यान 3 वजा करचें.
y=-2,x=-3
प्रणाली आतां सुटावी जाली.