मुखेल आशय वगडाय
y, x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

y-\frac{1}{3}x=1
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{1}{3}x वजा करचें.
y-\frac{4}{3}x=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{4}{3}x वजा करचें.
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y-\frac{1}{3}x=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=\frac{1}{3}x+1
समिकरणाच्या दोनूय कुशींतल्यान \frac{x}{3} ची बेरीज करची.
\frac{1}{3}x+1-\frac{4}{3}x=-2
y-\frac{4}{3}x=-2 ह्या दुस-या समिकरणांत y खातीर \frac{x}{3}+1 बदलपी घेवचो.
-x+1=-2
-\frac{4x}{3} कडेन \frac{x}{3} ची बेरीज करची.
-x=-3
समिकरणाच्या दोनूय कुशींतल्यान 1 वजा करचें.
x=3
दोनुय कुशींक -1 न भाग लावचो.
y=\frac{1}{3}\times 3+1
y=\frac{1}{3}x+1 त x खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=1+1
3क \frac{1}{3} फावटी गुणचें.
y=2
1 कडेन 1 ची बेरीज करची.
y=2,x=3
प्रणाली आतां सुटावी जाली.
y-\frac{1}{3}x=1
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{1}{3}x वजा करचें.
y-\frac{4}{3}x=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{4}{3}x वजा करचें.
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{4}{3}}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}\\-\frac{1}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}&\frac{1}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}-\frac{1}{3}\left(-2\right)\\1-\left(-2\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
अंकगणीत करचें.
y=2,x=3
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y-\frac{1}{3}x=1
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{1}{3}x वजा करचें.
y-\frac{4}{3}x=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{4}{3}x वजा करचें.
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
y-y-\frac{1}{3}x+\frac{4}{3}x=1+2
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून y-\frac{1}{3}x=1 तल्यान y-\frac{4}{3}x=-2 वजा करचो.
-\frac{1}{3}x+\frac{4}{3}x=1+2
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
x=1+2
\frac{4x}{3} कडेन -\frac{x}{3} ची बेरीज करची.
x=3
2 कडेन 1 ची बेरीज करची.
y-\frac{4}{3}\times 3=-2
y-\frac{4}{3}x=-2 त x खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y-4=-2
3क -\frac{4}{3} फावटी गुणचें.
y=2
समिकरणाच्या दोनूय कुशींतल्यान 4 ची बेरीज करची.
y=2,x=3
प्रणाली आतां सुटावी जाली.