मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x-4y=4,7x-7y=-14
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-4y=4
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=4y+4
समिकरणाच्या दोनूय कुशींतल्यान 4y ची बेरीज करची.
7\left(4y+4\right)-7y=-14
7x-7y=-14 ह्या दुस-या समिकरणांत x खातीर 4+4y बदलपी घेवचो.
28y+28-7y=-14
4+4yक 7 फावटी गुणचें.
21y+28=-14
-7y कडेन 28y ची बेरीज करची.
21y=-42
समिकरणाच्या दोनूय कुशींतल्यान 28 वजा करचें.
y=-2
दोनुय कुशींक 21 न भाग लावचो.
x=4\left(-2\right)+4
x=4y+4 त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-8+4
-2क 4 फावटी गुणचें.
x=-4
-8 कडेन 4 ची बेरीज करची.
x=-4,y=-2
प्रणाली आतां सुटावी जाली.
x-4y=4,7x-7y=-14
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-14\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-4\times 7\right)}&-\frac{-4}{-7-\left(-4\times 7\right)}\\-\frac{7}{-7-\left(-4\times 7\right)}&\frac{1}{-7-\left(-4\times 7\right)}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{21}\\-\frac{1}{3}&\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{4}{21}\left(-14\right)\\-\frac{1}{3}\times 4+\frac{1}{21}\left(-14\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
अंकगणीत करचें.
x=-4,y=-2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-4y=4,7x-7y=-14
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
7x+7\left(-4\right)y=7\times 4,7x-7y=-14
x आनी 7x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 7 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
7x-28y=28,7x-7y=-14
सोंपें करचें.
7x-7x-28y+7y=28+14
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 7x-28y=28 तल्यान 7x-7y=-14 वजा करचो.
-28y+7y=28+14
-7x कडेन 7x ची बेरीज करची. अटी 7x आनी -7x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-21y=28+14
7y कडेन -28y ची बेरीज करची.
-21y=42
14 कडेन 28 ची बेरीज करची.
y=-2
दोनुय कुशींक -21 न भाग लावचो.
7x-7\left(-2\right)=-14
7x-7y=-14 त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
7x+14=-14
-2क -7 फावटी गुणचें.
7x=-28
समिकरणाच्या दोनूय कुशींतल्यान 14 वजा करचें.
x=-4
दोनुय कुशींक 7 न भाग लावचो.
x=-4,y=-2
प्रणाली आतां सुटावी जाली.