मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x-\frac{y}{3}=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{y}{3} वजा करचें.
3x-y=0
3 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
y-2x=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
3x-y=0,-2x+y=0
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x-y=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=y
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
x=\frac{1}{3}y
दोनुय कुशींक 3 न भाग लावचो.
-2\times \frac{1}{3}y+y=0
-2x+y=0 ह्या दुस-या समिकरणांत x खातीर \frac{y}{3} बदलपी घेवचो.
-\frac{2}{3}y+y=0
\frac{y}{3}क -2 फावटी गुणचें.
\frac{1}{3}y=0
y कडेन -\frac{2y}{3} ची बेरीज करची.
y=0
दोनूय कुशीनीं 3 न गुणचें.
x=0
x=\frac{1}{3}y त y खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=0,y=0
प्रणाली आतां सुटावी जाली.
x-\frac{y}{3}=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{y}{3} वजा करचें.
3x-y=0
3 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
y-2x=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
3x-y=0,-2x+y=0
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-\left(-2\right)\right)}&-\frac{-1}{3-\left(-\left(-2\right)\right)}\\-\frac{-2}{3-\left(-\left(-2\right)\right)}&\frac{3}{3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रिसीस गुणचे.
x=0,y=0
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-\frac{y}{3}=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{y}{3} वजा करचें.
3x-y=0
3 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
y-2x=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
3x-y=0,-2x+y=0
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-2\times 3x-2\left(-1\right)y=0,3\left(-2\right)x+3y=0
3x आनी -2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
-6x+2y=0,-6x+3y=0
सोंपें करचें.
-6x+6x+2y-3y=0
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -6x+2y=0 तल्यान -6x+3y=0 वजा करचो.
2y-3y=0
6x कडेन -6x ची बेरीज करची. अटी -6x आनी 6x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-y=0
-3y कडेन 2y ची बेरीज करची.
y=0
दोनुय कुशींक -1 न भाग लावचो.
-2x=0
-2x+y=0 त y खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=0
दोनुय कुशींक -2 न भाग लावचो.
x=0,y=0
प्रणाली आतां सुटावी जाली.