मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+\frac{1}{2}-y=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=-\frac{1}{2}
दोनूय कुशींतल्यान \frac{1}{2} वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x+y=2,x-y=-\frac{1}{2}
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+y=2
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-y+2
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
-y+2-y=-\frac{1}{2}
x-y=-\frac{1}{2} ह्या दुस-या समिकरणांत x खातीर -y+2 बदलपी घेवचो.
-2y+2=-\frac{1}{2}
-y कडेन -y ची बेरीज करची.
-2y=-\frac{5}{2}
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
y=\frac{5}{4}
दोनुय कुशींक -2 न भाग लावचो.
x=-\frac{5}{4}+2
x=-y+2 त y खातीर \frac{5}{4} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{3}{4}
-\frac{5}{4} कडेन 2 ची बेरीज करची.
x=\frac{3}{4},y=\frac{5}{4}
प्रणाली आतां सुटावी जाली.
x+\frac{1}{2}-y=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=-\frac{1}{2}
दोनूय कुशींतल्यान \frac{1}{2} वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x+y=2,x-y=-\frac{1}{2}
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-\frac{1}{2}\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\-\frac{1}{2}\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\-\frac{1}{2}\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\-\frac{1}{2}\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}2\\-\frac{1}{2}\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\-\frac{1}{2}\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\left(-\frac{1}{2}\right)\\\frac{1}{2}\times 2-\frac{1}{2}\left(-\frac{1}{2}\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\\frac{5}{4}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{3}{4},y=\frac{5}{4}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+\frac{1}{2}-y=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=-\frac{1}{2}
दोनूय कुशींतल्यान \frac{1}{2} वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x+y=2,x-y=-\frac{1}{2}
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-x+y+y=2+\frac{1}{2}
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x+y=2 तल्यान x-y=-\frac{1}{2} वजा करचो.
y+y=2+\frac{1}{2}
-x कडेन x ची बेरीज करची. अटी x आनी -x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
2y=2+\frac{1}{2}
y कडेन y ची बेरीज करची.
2y=\frac{5}{2}
\frac{1}{2} कडेन 2 ची बेरीज करची.
y=\frac{5}{4}
दोनुय कुशींक 2 न भाग लावचो.
x-\frac{5}{4}=-\frac{1}{2}
x-y=-\frac{1}{2} त y खातीर \frac{5}{4} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{3}{4}
समिकरणाच्या दोनूय कुशींतल्यान \frac{5}{4} ची बेरीज करची.
x=\frac{3}{4},y=\frac{5}{4}
प्रणाली आतां सुटावी जाली.