मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+2y=5,x-y=4
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+5
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
-2y+5-y=4
x-y=4 ह्या दुस-या समिकरणांत x खातीर -2y+5 बदलपी घेवचो.
-3y+5=4
-y कडेन -2y ची बेरीज करची.
-3y=-1
समिकरणाच्या दोनूय कुशींतल्यान 5 वजा करचें.
y=\frac{1}{3}
दोनुय कुशींक -3 न भाग लावचो.
x=-2\times \frac{1}{3}+5
x=-2y+5 त y खातीर \frac{1}{3} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{2}{3}+5
\frac{1}{3}क -2 फावटी गुणचें.
x=\frac{13}{3}
-\frac{2}{3} कडेन 5 ची बेरीज करची.
x=\frac{13}{3},y=\frac{1}{3}
प्रणाली आतां सुटावी जाली.
x+2y=5,x-y=4
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5+\frac{2}{3}\times 4\\\frac{1}{3}\times 5-\frac{1}{3}\times 4\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{3}\\\frac{1}{3}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{13}{3},y=\frac{1}{3}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=5,x-y=4
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-x+2y+y=5-4
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x+2y=5 तल्यान x-y=4 वजा करचो.
2y+y=5-4
-x कडेन x ची बेरीज करची. अटी x आनी -x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
3y=5-4
y कडेन 2y ची बेरीज करची.
3y=1
-4 कडेन 5 ची बेरीज करची.
y=\frac{1}{3}
दोनुय कुशींक 3 न भाग लावचो.
x-\frac{1}{3}=4
x-y=4 त y खातीर \frac{1}{3} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{13}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{3} ची बेरीज करची.
x=\frac{13}{3},y=\frac{1}{3}
प्रणाली आतां सुटावी जाली.