मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+2y=7,-x-y=277
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+7
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
-\left(-2y+7\right)-y=277
-x-y=277 ह्या दुस-या समिकरणांत x खातीर -2y+7 बदलपी घेवचो.
2y-7-y=277
-2y+7क -1 फावटी गुणचें.
y-7=277
-y कडेन 2y ची बेरीज करची.
y=284
समिकरणाच्या दोनूय कुशींतल्यान 7 ची बेरीज करची.
x=-2\times 284+7
x=-2y+7 त y खातीर 284 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-568+7
284क -2 फावटी गुणचें.
x=-561
-568 कडेन 7 ची बेरीज करची.
x=-561,y=284
प्रणाली आतां सुटावी जाली.
x+2y=7,-x-y=277
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\277\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\left(-1\right)}&-\frac{2}{-1-2\left(-1\right)}\\-\frac{-1}{-1-2\left(-1\right)}&\frac{1}{-1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7-2\times 277\\7+277\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-561\\284\end{matrix}\right)
अंकगणीत करचें.
x=-561,y=284
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=7,-x-y=277
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-x-2y=-7,-x-y=277
x आनी -x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
-x+x-2y+y=-7-277
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -x-2y=-7 तल्यान -x-y=277 वजा करचो.
-2y+y=-7-277
x कडेन -x ची बेरीज करची. अटी -x आनी x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-y=-7-277
y कडेन -2y ची बेरीज करची.
-y=-284
-277 कडेन -7 ची बेरीज करची.
y=284
दोनुय कुशींक -1 न भाग लावचो.
-x-284=277
-x-y=277 त y खातीर 284 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-x=561
समिकरणाच्या दोनूय कुशींतल्यान 284 ची बेरीज करची.
x=-561
दोनुय कुशींक -1 न भाग लावचो.
x=-561,y=284
प्रणाली आतां सुटावी जाली.