मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+2y=3,2x+2y=3
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+3
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
2\left(-2y+3\right)+2y=3
2x+2y=3 ह्या दुस-या समिकरणांत x खातीर -2y+3 बदलपी घेवचो.
-4y+6+2y=3
-2y+3क 2 फावटी गुणचें.
-2y+6=3
2y कडेन -4y ची बेरीज करची.
-2y=-3
समिकरणाच्या दोनूय कुशींतल्यान 6 वजा करचें.
y=\frac{3}{2}
दोनुय कुशींक -2 न भाग लावचो.
x=-2\times \frac{3}{2}+3
x=-2y+3 त y खातीर \frac{3}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-3+3
\frac{3}{2}क -2 फावटी गुणचें.
x=0
-3 कडेन 3 ची बेरीज करची.
x=0,y=\frac{3}{2}
प्रणाली आतां सुटावी जाली.
x+2y=3,2x+2y=3
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
\left(\begin{matrix}1&2\\2&2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 2}&-\frac{2}{2-2\times 2}\\-\frac{2}{2-2\times 2}&\frac{1}{2-2\times 2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3+3\\3-\frac{1}{2}\times 3\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{3}{2}\end{matrix}\right)
अंकगणीत करचें.
x=0,y=\frac{3}{2}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=3,2x+2y=3
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-2x+2y-2y=3-3
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x+2y=3 तल्यान 2x+2y=3 वजा करचो.
x-2x=3-3
-2y कडेन 2y ची बेरीज करची. अटी 2y आनी -2y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-x=3-3
-2x कडेन x ची बेरीज करची.
-x=0
-3 कडेन 3 ची बेरीज करची.
x=0
दोनुय कुशींक -1 न भाग लावचो.
2y=3
2x+2y=3 त x खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=\frac{3}{2}
दोनुय कुशींक 2 न भाग लावचो.
x=0,y=\frac{3}{2}
प्रणाली आतां सुटावी जाली.