p, b खातीर सोडोवचें
p=55
b=75
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
p+b=130,p+1.09b=136.75
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
p+b=130
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक p वेगळावन p खातीर तें सोडोवचें.
p=-b+130
समिकरणाच्या दोनूय कुशींतल्यान b वजा करचें.
-b+130+1.09b=136.75
p+1.09b=136.75 ह्या दुस-या समिकरणांत p खातीर -b+130 बदलपी घेवचो.
0.09b+130=136.75
\frac{109b}{100} कडेन -b ची बेरीज करची.
0.09b=6.75
समिकरणाच्या दोनूय कुशींतल्यान 130 वजा करचें.
b=75
0.09 वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
p=-75+130
p=-b+130 त b खातीर 75 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी p खातीर थेट सोडोवंक शकतात.
p=55
-75 कडेन 130 ची बेरीज करची.
p=55,b=75
प्रणाली आतां सुटावी जाली.
p+b=130,p+1.09b=136.75
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}130\\136.75\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1.09}{1.09-1}&-\frac{1}{1.09-1}\\-\frac{1}{1.09-1}&\frac{1}{1.09-1}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}&-\frac{100}{9}\\-\frac{100}{9}&\frac{100}{9}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}\times 130-\frac{100}{9}\times 136.75\\-\frac{100}{9}\times 130+\frac{100}{9}\times 136.75\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}55\\75\end{matrix}\right)
अंकगणीत करचें.
p=55,b=75
मॅट्रिक्स मुलतत्वां p आनी b काडचीं.
p+b=130,p+1.09b=136.75
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
p-p+b-1.09b=130-136.75
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून p+b=130 तल्यान p+1.09b=136.75 वजा करचो.
b-1.09b=130-136.75
-p कडेन p ची बेरीज करची. अटी p आनी -p रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-0.09b=130-136.75
-\frac{109b}{100} कडेन b ची बेरीज करची.
-0.09b=-6.75
-136.75 कडेन 130 ची बेरीज करची.
b=75
-0.09 वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
p+1.09\times 75=136.75
p+1.09b=136.75 त b खातीर 75 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी p खातीर थेट सोडोवंक शकतात.
p+81.75=136.75
75क 1.09 फावटी गुणचें.
p=55
समिकरणाच्या दोनूय कुशींतल्यान 81.75 वजा करचें.
p=55,b=75
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}